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1 Cubic Equations

1.1 The well known quadratic formula

Let C be the set of complex numbers and x be a complex variable. A polynomial

over C is an expression of the form

anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

where an 6= 0 and aj ∈ C, 0 ≤ j ≤ n. The degree of a non-zero polynomial

p(x) = anx
n+an−1x

n−1 + · · ·+a1x+a0 is defined to be n. Note that the degree

of the “constant polynomial” p(x) = a0 where a0 6= 0 is 0. The degree of p(x) = 0

is undefined. (It is sometimes defined as −∞.)

A polynomial of degree n ≥ 1 is said to be monic if an = 1. In general, we may

replace C by any commutative ring with identity R and define a polynomial of

degree n over R as an expression of the form

anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

with aj ∈ R for 0 ≤ j ≤ n and an 6= 0.

A complex number α is said to be a solution of the polynomial equation

anx
n + an−1x

n−1 + · · ·+ a0 = 0

where aj ∈ C, 0 ≤ j ≤ n, if

anα
n + an−1α

n−1 + · · ·+ a1α+ a0 = 0.

Since C is a field and an 6= 0, we may divide the polynomial equation by an and

consider polynomial equation where the polynomial is monic. The solutions to

the polynomial equation are called the roots or zeroes of the polynomial.

When n = 2, we learn from high school (or secondary school) that the solution

to

x2 + bx+ c = 0, (1.1)

is

α =
−b±

√
b2 − 4c

2
. (1.2)
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In order to derive (1.2), we first set x = y − b/2 and rewrite (1.1) as(
y − b

2

)2

+ b

(
y − b

2

)
+ c = 0,

which simplifies as

y2 + c− b2

4
= 0.

This yields

y = ±
√
b2

4
− c,

which implies that

x = − b
2
±
√
b2

4
− c =

−b±
√
b2 − 4c

2
.

Remark 1.1 The derivation of the quadratic formula is usually done by “com-

pleting the square”. Here, we emphasize on the removal of the coefficient of x in

(1.1).

1.2 Cardan’s formulas for the cubic equation

A cubic monic polynomial equation is of the form

x3 + bx2 + cx+ d = 0. (1.3)

Motivated by our approach in the previous section, we will first remove the x2

term by letting x = y − b/3. The substitution yields

y3 + py + q = 0 (1.4)

with

p = −b
2

3
+ c

and

q =
2

27
b3 − bc

3
+ d.

The above discussion shows that any cubic polynomial equation can be written in

the form (1.4). The polynomial equation (1.4) is called a reduced cubic polynomial

equation. In order to find the solutions of a cubic polynomial equation, it suffices

to find the solutions of the reduced cubic polynomial equation.

When p = 0, (1.4) has solutions −q1/3,−ωq1/3 and −ω2q1/3, where ω = e2πi/3.

We will next assume that p 6= 0 and determine the solutions of (1.4).
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Let y = u+ v and observe that (1.4) takes the form

y3 + py + q = u3 + v3 + 3uv(u+ v) + p(u+ v) + q = 0. (1.5)

Suppose u and v are chosen such that

3uv = −p. (1.6)

Then we find from (1.5) that

u3 + v3 + q = u3 +

(
−p
3u

)3

+ q = 0 (1.7)

where we have used (1.6) and the fact that p 6= 0 (which implies that u 6= 0).

This yields

u6 + qu3 − p3

27
= 0. (1.8)

This implies that

u3 = −q
2
±
√
q2 + 4p3/27

2
.

Let

δ3 = q2 +
4p3

27
.

The solutions to (1.8) are then contained in the set

{ωjz1, ωjz2|1 ≤ j ≤ 3} (1.9)

where

z1 =
3

√
−q

2
+

√
δ3
2

and z2 =
3

√
−q

2
−
√
δ3
2
.

Note that the cube roots in z1 and z2 are chosen so that

z1z2 = −p
3

since

z31z
3
2 = −p

3

27
.

Because of the above relation between z1 and z2, the six solutions in (1.9) pair

up to yield three solutions for (1.4). Therefore,

y1 = z1 −
p

3z1
= z1 + z2.

The other two solutions of the cubic monic polynomial equation are

y2 = ωz1 + ω2z2

and

y3 = ω2z1 + ωz2.
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example 1.1 [p. 209, Rotman, Advanced Modern Algebra]

Consider the polynomial equation

x3 − 15x− 126 = 0.

Here p = −15, q = −126. We may let z1 = 1 and z2 = 5. The solutions of the

polynomial equation are

6, 5ω + ω2 = −3 + 2i
√

3, 5ω2 + ω = −3− 2i
√

3.

1.3 Permutations of roots

In the previous section, we have seen that the solutions of y3 + py + q = 0 are

y1 = z1 + z2,

y2 = ωz1 + ω2z2

and

y3 = ω2z1 + ωz2,

where

z1 =
3

√
1

2

(
−q +

√
δ3

)
and

z2 = − p

3z1
=

3

√
1

2

(
−q −

√
δ3

)
.

We now express z1 and z2 in terms of y1, y2 and y3 and arrive at the following

six solutions of z6 + qz3 − p3/27 = 0:

z1 =
1

3

(
y1 + ω2y2 + ωy3

)
, (1.10)

z2 =
1

3

(
y1 + ωy2 + ω2y3

)
,

ωz1 =
1

3

(
ωy1 + y2 + ω2y3

)
,

ωz2 =
1

3

(
ωy1 + ω2y2 + y3

)
,

ω2z1 =
1

3

(
ω2y1 + ωy2 + y3

)
,

and

ω2z2 =
1

3

(
ω2y1 + y2 + ωy3

)
.
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Let Sn be the set of permutations on {1, 2, · · · , n}. It is known that Sn,

together with the composition of permutations, forms a group. A cycle

(a1 a2 · · · a`−1 a`)

is used to represent the map sending a1 to a2, a2 to a3, · · · , a`−1 to a` and a`
to a1. An element σ ∈ Sn is represented by a product of cycles. A transposition

of Sn is a cycle of the form (a1 a2). If σ ∈ Sn, then σ can be expressed as a

product of transpositions. In other words, σ = τ1τ2 · · · τt for some transpositions

τj , 1 ≤ j ≤ t. The representation of σ in terms of transpositions is not unique.

However, the parity of t is invariant regardless of the representation. Therefore,

we may define sgn : Sn → {±1} as sgn(σ) = (−1)t. The function sgn is a

homomorphism of groups from Sn to the group of two elements it is known as

the signum on Sn.

example 1.2 The group

S3 = {(1)(2)(3), (1 2 3), (1 3 2), (1 2)(3), (1 3)(2), (2 3)(1)}.

Note that sgn((1 2 3)) = 1, sgn((1 2)(3)) = −1. Note that the group

A3 = {σ ∈ S3

∣∣sgn(σ) = 1}

forms a subgroup of S3. In general, the set

An = {σ ∈ Sn
∣∣sgn(σ) = 1}

forms a subgroup of Sn.

Let G be a group and X be a set. We say that (G, ∗) acts on X if there exists

• : G×X → X

such that

(i) g1 • (g2 • x) = (g1 ∗ g2) • x,
(ii) 1G • x = x.

Note that we write g • x instead of •(g, x).

The group S3 acts on the roots {y1, y2, y3} of y3 + py + q by

σ ◦ yj = yσ(j).

With this definition (extended by linearity), we see that

(1 2) ◦ z1 = (1 2) ◦ (y1 + ω2y2 + ωy3) = y2 + ω2y1 + ωy3 = ω2z2

and

(1 2 3) ◦ z1 = ω2z1.
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By direct computations, we find that S3 acts transitively on the roots of

z6 + qz3 − p3/27.

It is important to note that (1 2 3) ◦ z3i = z3i for i = 1 and 2. This means

that z3i is “fixed” by the cyclic subgroup generated by (1 2 3) and this is the

main reason why a cubic polynomial equation is solvable as one can predict that

z3i lies in a “quadratic field extension” over Q. We will make these statements

precise as we progress in our course.

1.4 Quartic polynomials

The roots of a reduced quartic polynomial x4+qx2+rx+s can also be expressed in

terms of “radicals”, which are expressions involving m
√
f(q, r, s), where f(q, r, s)

are rational functions involving q, r and s. Let αj , j = 1, 2, 3, 4 be the roots of

the above quartic polynomial. Let

z1 = (α1 + α2)(α3 + α4),

z2 = (α1 + α3)(α2 + α4),

and

z3 = (α1 + α4)(α2 + α3).

If

σ1 =

4∑
j=1

αj ,

σ2 =
∑

1≤i<j≤4

αiαj ,

σ3 =
∑

1≤i<j<k≤4

αiαjαk

and

σ4 = α1α2α3α4.

Then we can show that

z1 + z2 + z3 = 2σ2 = 2q,

z1z2 + z1z3 + z2z3 = σ2
2 + σ1σ3 − 4σ4 = q2 − 4s,

and

z1z2z3 = σ1σ2σ3 − σ2
1σ4 − σ2

3 = −r2,
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where we have used the fact that

α1 + α2 + α3 + α4 = 0.

This shows that z1, z2 and z3 are roots of

z3 − 2qz2 + (q2 − 4s)z + r2.

The cubic polynomial is called a resolvent cubic of the quartic polynomial

x4 + qx2 + rx+ s.

A quartic polynomial can have more than one resolvent cubic.

Using the formula for solving cubic polynomial equation, we are able to de-

termine the roots zj , 1 ≤ j ≤ 3, of the resolvent cubic. We can then retrieve

αj , j = 1, 2, 3, 4 by first observing from the relation α1 + α2 + α3 + α4 = 0 that

(α1 + α2)2 = −z1, (α1 + α3)2 = −z2 and (α1 + α4)2 = −z3.

This implies, for example, that α1 in terms of z1, z2 and z3.

α1 =
1

2

(√
−z1 +

√
−z2 +

√
−z3

)
.

The other three zeroes of the quartic polynomial are given by

α2 =
1

2

(√
−z1 −

√
−z2 −

√
−z3

)
,

α3 =
1

2

(
−
√
−z1 +

√
−z2 −

√
−z3

)
and

α4 =
1

2

(
−
√
−z1 −

√
−z2 +

√
−z3

)
.

We emphasize here that where −z1,−z2 and −z3 are not real positive numbers,

we have to be careful in our choice of
√−zj , 1 ≤ j ≤ 3.

1.5 The Discriminant

The number δ2 = b2−4c is known as the discriminant of the polynomial x2+bx+c.

Note that if

α =
−b+

√
δ2

2
and β =

−b−
√
δ2

2
,

then

(α− β)
2

= δ2.

In other words, the discriminant of the quadratic polynomial is the square of the

difference of its two roots. This point of view allows us to define the discriminant

of a polynomial of degree n ≥ 2. This is given as follows:
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definition 1.1 Let p(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0. The discriminant

of p(x), denoted by ∆(p(x)), is defined as

∆(p(x)) =
∏

1≤i<j≤n

(αi − αj)2,

where α1, α2, · · ·αn are the roots of p(x).

We will now compute the discriminant of a reduced cubic polynomial. Write

z1 =
3

√
1

2

(
−q +

√
δ3

)
and z2 =

3

√
1

2

(
−q −

√
δ3

)
.

Then

z31 − z32 =
1

2

(
−q +

√
δ3

)
− 1

2

(
−q −

√
δ3

)
=
√
δ3.

But

z31 − z32 = (z1 − z2) (z1 − ωz2)
(
z1 − ω2z2

)
.

On the other hand by (1.10), we observe that

z1 − z2 = − i√
3

(y2 − y3) ,

z1 − ωz2 =
iω2

√
3

(y1 − y3)

and

z1 − ω2z2 = − iω√
3

(y1 − y2) .

This implies that √
δ3 = − i

3
√

3
(y1 − y2) (y1 − y3) (y2 − y3) ,

or

∆(x3 + px+ q) = −27q2 − 4p3.



2 Symmetric polynomials

2.1 Polynomial rings in n variables

definition 2.1 A polynomial in x1, x2, · · · , xn with coefficients in F is a finite

sum of terms, which are expressions of the form cxk11 · · ·xknn , where c ∈ F and kj
are non-negative integers for 1 ≤ j ≤ n. A term is non-zero if c 6= 0. The set of

polynomials in n variables with coefficients in F is denoted by F [x1, x2, · · · , xn].

We now introduce an important example of a function in F [x1, x2, · · · , xn].

definition 2.2 Given n ≥ 2 variables x1, · · · , xn over a field F , the discrim-

inant (associated with x1, x2, · · · , xn) is defined as

∆(x1, · · · , xn) =
∏

1≤i<j≤n

(xi − xj)2 ∈ F [x1, · · · , xn].

definition 2.3 The total degree of a nonzero term cxk11 · · ·xknn is k1 + k2 +

· · ·+ kn. The total degree of a polynomial f = f(x1, x2, · · · , xn) in n variables,

denoted by deg(f), is the maximum of the total degree of the non-zero term of

f .

example 2.1 The degree of ∆(x1, x2, · · · , xn) is n(n− 1).

example 2.2 Let

σn,j(x1, x2, · · · , xn) =
∑

1≤i1<i2<···<ij≤n

xi1xi2 · · ·xij .

The degree of σn,j is j.
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definition 2.4 A polynomial f ∈ F [x1, x2, · · · , xn] is homogeneous if each

term in f has total degree equal to the degree of f .

example 2.3 If f and g are non-zero polynomial, then

deg(fg) = deg(f) + deg(g).

example 2.4 Show that F [x, y] is not a principal ideal domain.

Solution

Let I = {xg + yh|g, h ∈ F [x, y]}. Note that if 1 ∈ I then 1 = xg + yh for some

g, h ∈ F [x, y]. But the degree of the left hand side is not equal to the degree

of the right hand side and thus, this is not possible. Therefore I 6= F [x, y].

Suppose I = k(x, y)F [x, y]. Then x = k(x, y)a(x, y) and y = k(x, y)b(x, y).

This means that deg(a(x, y)) = deg(b(x, y)) = 0. Therefore x = k(x, y)c and

y = k(x, y)d with c, d ∈ F . Therefore, x = (c/d)dk(x, y) = (c/d)y, contradicting

to the assumption that x and y are independent variables.

2.2 Elementary symmetric polynomials and symmetric polynomials

Let Sn denote the set of bijections on {1, 2, · · · , n}. The set Sn is a group under

the composition of bijections. The group Sn acts on F [x1, x2, · · · , xn] in the

following way:

σ · f(x1, · · · , xn) = f(xσ(1), · · ·xσ(n)), σ ∈ Sn, f(x1, · · · , xn) ∈ F [x1, · · ·xn].

definition 2.5 A polynomial f(x1, x2, · · · , xn) ∈ C[x1, x2, · · · , xn] is sym-

metric if

σ · f(x1, · · · , xn) = f(xσ(1), · · · , xσ(n)) = f(x1, x2, · · · , xn)

for any permutation σ ∈ Sn.

example 2.5 Another representation of ∆(x1, · · · , xn) is given by

∆(x1, · · · , xn) = (−1)n(n−1)/2
n∏

i,j=1
i 6=j

(xi − xj) . (2.1)
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Given any element σ ∈ Sn, we know that σ is a disjoint product of cycles. Each

cycle is a product of 2-cycles. More precisely,

(a1 a2 · · · an−1an) = (a1 an) · · · (a1 a3)(a1 a2),

reading the map from right to left. In order to show that ∆(x1, · · · , xn) is sym-

metric, it suffices to show that it is invariant under the action of 2-cycle. Now,

suppose i, j 6∈ {`, k}, then

(k `) ◦ (xi − xj) = (xi − xj),
(k `) ◦ (xk − xj) = (x` − xj), (k `) ◦ (x` − xj) = (xk − xj),
(k `) ◦ (xj − xk) = (xj − x`), (k `) ◦ (xj − x`) = (xj − xk),

(k `) ◦ (xk − x`) = (x` − xk), (k `) ◦ (x` − xk) = (xk − x`).

This implies, using (2.1), that

(k `) ◦ ∆(x1, · · · , xn) = ∆(x1, · · · , xn)

and therefore ∆(x1, · · · , xn) is a symmetric polynomial.

example 2.6 Given variables x1, x2, · · · , xn, define

σn,j(x1, x2, · · · , xn) =
∑

1≤m1<m2<···<mj≤n

xm1xm2 · · ·xmj .

To see that σn,j are symmetric polynomials, we observe that

S(x, x1, · · ·xn) = (x− x1) · · · (x− xn) =xn − σn,1xn−1 + · · ·+ (−1)rσn,rx
n−r

(2.2)

+ · · ·+ (−1)nσn,n,

where σn,j = σn,j(x1, x2, · · · , xn). Note that for τ ∈ Sn,

τ ◦ S(x, x2, · · ·xn) = S(x, xτ(1), · · · , xτ(n)) = S(x, x1, x2, · · · , xn).

Comparing the coefficients of xj in the expansion of S(x, x1, · · · , xn) and

S(x, xτ(1), · · · , xτ(n)) using (2.2), we conclude that

τ ◦ σn,j(x1, · · · , xn) = σn,j(xτ(1), · · · , xτ(n)) = σn,j(x1, x2, · · · , xn).

theorem 2.1 Any symmetric polynomial in F [x1, · · · , xn] can be written as

a polynomial in σn,1, · · ·σn,n with coefficients in F .

Proof

Given any positive integerN , there are finitely many positive integers k1, k2, · · · , kn,
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such that k1+k2+· · ·+kn = N. Note that kj ≤ N and so there are at most N+1

choices for each kJ . Therefore, the number of terms of the form xa11 x
a2
2 · · ·xann

with k1 +k2 + · · ·+kn = N is finite. We now order the monomials xk11 x
k2
2 · · ·xknn

as follow: We say that

xk11 x
k2
2 · · ·xknn < x`11 x

`2
2 · · ·x`nn

if k1 + · · ·+ kn < `1 + · · ·+ `n

or

if k1 + · · ·+ kn = `1 + · · ·+ `n and k1 < `1,

or

if k1 + · · ·+ kn = `1 + · · ·+ `n and k1 = `1, k2 < `2,

or

...

or

if k1 + · · ·+ kn = `1 + · · ·+ `n and k1 = `1, · · · , kn−1 = `n−1, kn < `n.

For example, x41x
2
2x3 < x21x

3
2x

3
3 and x41x3x

2
3 < x41x

2
2x3.

Note that with this ordering on monomials, any polynomial f ∈ F [x1, · · · , xn]

has a leading monomial. For example, the leading monomial of σn,2 is x1x2. In

general, the leading monomial of σn,j is x1 · · ·xj .

definition 2.6 Let f ∈ F [x1, x2, · · · , xn]. The leading monomial of f , which

is called the leading term of f is denoted by LT (f).

We are now ready to prove the theorem. It suffices to prove the theorem for

homogeneous symmetric polynomials since any symmetric polynomial is a sum

of such polynomials. Let f be a homogeneous symmetric polynomial of degree

N . Suppose that

LT (f(x1, x2, · · · , xn)) = cxk11 · · ·xknn ,

where k1 + k2 + · · · + kn = N and c ∈ F . We claim that k1 ≥ k2 ≥ · · · ≥ kn.

Suppose not. Let kj ≥ ki for i ≥ j. Then

xk11 · · ·x
ki
i · · ·x

kj
j · · ·x

kn
n < xk11 · · ·x

kj
i · · ·x

ki
j · · ·x

kn
n .

A constant multiple of the term on the right appears in f(x1, · · · , xn) since

f(x1, · · · , xn) is symmetric. The above inequality contradicts the assumption

that cxk11 · · ·x
ki
i · · ·x

kj
j · · ·xknn is equal to LT (f(x1, · · · , xn)).
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Suppose k1 ≥ k2 ≥ · · · ≥ kn ≥ 0. Now

LT (σk1−k2n,1 σk2−k3n,2 · · ·σkn−1−kn
n,n−1 σknn,n) = xk11 · · ·xknn .

Therefore, if c is the coefficient of xk11 · · ·xknn in f(x1, · · · , xn) then f(x1, · · · , xn)−
cσk1n,1 · · ·σknn,n is a symmetric polynomial of degree N with leading term smaller

than xk11 · · ·xknn . Repeating the process with the terms in f(x1, · · · , xn) −
cσk1n,1 · · ·σknn,n, we will eventually eliminate all monomials with degree N and

conclude that f(x1, · · · , xn) can be expressed in the elementary symmetric poly-

nomials.

example 2.7 We now illustrate the process described in the proof above using

an example. The polynomial f(x1, x2, x3) = (x1 − x2)2(x2 − x3)2(x1 − x3)2 has

degree 6 and

LT (f(x1, x2, x3)) = x41x
2
2.

By the process described in the above proof, we deduce that

f(x1, · · · , xn) = σ2
3,1σ

2
3,2 − 4σ3

3,1σ3,3 − 4σ3
3,2 + 18σ3,1σ3,2σ3,3 − 27σ2

3,3.

Remark 2.1 It can be shown that the expression of any symmetric polynomial

in terms of elementary symmetric polynomials is unique. For more details, see

pp. 35–37 of “Galois Theory” by D.A. Cox.

Suppose that we have field F , a ringR containing F , and elements α1, α2, · · · , αn ∈
R. Then the evaluation map

Eα1,··· ,αn : F [x1, x2, · · · , xn]→ R

is defined by

Eα1,··· ,αn(f(x1, x2, · · · , xn)) = f(α1, α2, · · · , αn).

The evaluation is a ring homomorphism from F [x1, x2, · · · , xn] to R.

Using the evaluation map Eα1,··· ,αn which sends xi to αi, 1 ≤ i ≤ n, we arrive

at the following Corollary:

corollary 2.2 Let f = xn + a1x
n−1 + a2x

n−2 + · · · + an−1x + an ∈ C[x]

with roots α1, · · · , αn. Then the coefficients of f(x) can be expressed in terms

of its roots as

ar = (−1)rσn,r(α1, · · · , αn)

for r = 1, · · · , n.
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Remark 2.2 Please note the unusual way of naming the coefficients of xr.

Instead of using ar, we have used an−r.



3 Roots of polynomials

3.1 Field extensions

A field F is a ring such that every nonzero element has a multiplicative inverse.

For any field F , we observe that n1F is the sum of n copies of 1F .

If n1F = 0 and n is the smallest positive for which this happens, then n must

be a prime. For if n is not a prime then n = ab and either a1F = 0 or b1F = 0,

contradicting the minimality of n. In other words, p1F = 0 for some prime p.

When this happens, we say that the field F has characteristic p. If n1F 6= 0 for

all non-zero integers, then we say that the field F has characteristic 0. The set of

complex numbers is a field of characteristic 0. The field Z/pZ has characteristic

p. Given a field F , can we construct “new fields” that contain F? To answer this

question, we begin with Cauchy’s construction of the complex numbers.

The complex numbers can be constructed from R[x]/(x2 + 1)R[x]. If we let

m = (x2 + 1)R[x] and set

α = x+ m,

then we find that

α · α = −1 + m.

Note that by setting 1 = 1 + m and i = x+ m, we find that

(a1 + bi)(c1 + di) = (ac− bd)1 + (ad+ bc)i)

and we “recover” the set of complex numbers.

The above construction relies on the fact if R is a commutative ring with

identity and m is a maximal ideal of R then R/m is a field. In the above example,

the ideal generated by x2+1 is a maximal ideal of R[x] and therefore, R[x]/(x2+

1) is a field. Note that the map

ϕ : R→ R[x]/(x2 + 1)

which sends r to r + (x2 + 1) shows that the field

R[x]/(x2 + 1)

contains a field isomorphic to R.

We now construct more fields using the idea similar to Cauchy’s construction

of the complex numbers.
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definition 3.1 Given a ring homomorphism of fields

ϕ : F → L,

then we say that L is a field extension of F via ϕ. We will usually identify F

with its image ϕ(F ) = {ϕ(a)|a ∈ F} ⊂ L and write F ⊂ L.

theorem 3.1 If f(x) ∈ F [x] is irreducible, then there is a extension field

F ⊂ L and α ∈ L such that f(α) = 0.

Proof

Let m = f(x)F [x] and let α = x+ m. Then f(α) = 0 in L = F [x]/m.

Recall that α ∈ L is a root of f(x) if and only if x − α is a factor of f(x).

Thus, to say that a field L contains all roots of f(x) is the same as saying that

f(x) = an(x− α1) · · · (x− αn)

where α1, · · · , αn ∈ L.

definition 3.2 Let f(x) ∈ F [x] and L be a field extension of F . If

f(x) = an(x− α1) · · · (x− αn)

where α1, · · · , αn ∈ L, then we say that f(x) splits completely over L.

The following theorem shows that for any polynomial f(x) ∈ F [x], f(x) splits

completely in some field extension of F .

theorem 3.2 (Kronecker) Let F be any field. Let f(x) ∈ F [x] be a polynomial

of degree n > 0. Then there is a field extension F ⊂ L such that f(x) splits

completely over L.

Proof

We will prove the theorem using induction on n, the degree of f(x). If n = 1

then L = F . Suppose for any field F , the assertion is true for polynomials of

degree less than n. Let deg(f(x)) = n. Then f(x) = p(x)g(x) for some irreducible

polynomial p(x) (note that g(x) could be 1F ). By the induction hypothesis, there

exists a field extension E1 over F such that

E1 ' F [x]/p(x)F [x]

such that p(α) = 0 for some α ∈ E1. Note that f(α) = 0 in E1. Therefore
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f(x) = (x − α)f2(x) in E1[x]. Now, the degree of f2(x) is less than n and

therefore, by induction hypothesis, there exists a field extension E2 of E1 for

which f2(x) splits. Hence, f(x) splits completely in E2.

Remark 3.1 An element α is said to be algebraic over F if f(α) = 0 for

some f(x) ∈ F [x]. A field K is said to be algebraically closed if all elements α

which are algebraic over K are already in K. In other words, all polynomials

f(x) ∈ K[x] splits completely in K. An example of such field is C and this is a

consequence The Fundamental Theorem of Algebra states that C is algebraically

closed. A field extension K of F is said to be an algebraic closure of F if every

elements K is algebraic over F and K is algebraically closed. Given a field F ,

it can be shown, using Zorn’s lemma, that its algebraic closure exists. In other

words, if f(x) ∈ F [x], we may regard it as a polynomial in K[x] and since K

is algebraically closed, f(x) splits completely in K. This implies that for any

field F and any polynomial f(x) ∈ F [x], there exists an algebraic extension K

of F such that f(x) splits completely in K. This gives another proof of Theorem

3.2. For more details of the discussion of this approach, see Chapter 8 of D.J.H.

Garling’s “A course in Galois Theory”.

3.2 Fundamental Theorem of Algebra

In this section, we give a proof that C is algebraically closed. This proof is due to

L. Euler and J.L. Lagrange. (Gauss also gave a similar proof. For more details,

see pages 67 to 68 of Cox’s book.)

theorem 3.3 The following are equivalent:

(a) Every non-constant f(x) ∈ C[x] has at least one root in C.

(b) Every non-constant f(x) ∈ C[x] splits completely in C.

(c) Every non-constant f(x) ∈ R[x] has at least one root in C.

Proof

To prove that (a) implies (b), we use induction on the degree of f(x). When

n = 1, we write f(x) = ax + b = a(x − (−b/a)) and so, f(x) splits completely

over C. Next, suppose that n > 1 and that our assertion is true for polynomials

with degree less than or equal to n−1. Suppose f(x) is a polynomial of degree n

and that α ∈ C is a root of f(x). Then f(x) = (x− α)g(x) for some polynomial

g(x). By induction, g(x) splits completely over C. This implies that f(x) splits

completely over C.
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Now, (b) implies (c) because a polynomial over R is a polynomial over C and

so, f(x) has at least one root in C since (b) holds.

Finally, we show that (c) implies (a). Assume (c). We must show that every

non-constant f(x) ∈ C[x] has a root in C. Let f(x) = anx
n + · · · + a0 and

f(x) = anx
n + · · ·+ a0. Then the polynomial h(x) = f(x)f(x) is in R[x]. To see

this, observe that

u(x)v(x) =

ν∑
j=0

cjxj
µ∑
k=0

dkxk =

ν+µ∑
`=0

e`x`,

where

e` =
∑
k+j=`

cjdk.

Since

e` =
∑
k+j=`

cjdk =
∑
k+j=`

cjdk,

we conclude that

u(x)v(x) = u(x)v(x).

Applying the above to h(x), we conclude that h(x) = h(x) and hence, h(x) ∈
R[x].

By (c), h(x) has a root, say α, in C. This implies that f(α)f(α) = 0. Therefore,

f(α) = 0 or f(α) = 0. If f(α) = 0, then we are done. If f(α) = 0 then f(α) = 0

and α is a root of f(x).

theorem 3.4 Every f(x) ∈ R[x] of odd degree has at least one root in R.

Proof

We may assume f(x) is monic and let f(x) = xn + an−1x
n−1 + · · · + a1x + a0.

If aj = 0 for 0 ≤ j ≤ n− 1 then f(x) has a root, namely, 0. Suppose aj 6= 0 for

some j. Let M = |a0|+ · · ·+ |an−1|+ 1 > 1. Then

|an−1Mn−1 + · · ·+ a0| ≤ (|an−1|+ · · ·+ |a0|)Mn−1

< (1 + |an−1|+ · · ·+ |a0|)Mn−1 = Mn.

This implies that

f(M) = Mn + an−1M
n−1 + · · ·+ a0 > 0.

Similarly,

(−M)n + an−1(−M)n−1 + · · ·+ a1(M ) + a0

≤ −Mn + |an−1|Mn−1 + · · ·+ |a1|M + |a0|
< −Mn + (1 + |an−1 + · · ·+ |a0|)Mn−1 = 0,
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where we have used the fact that n is odd. This implies that

f(−M) < 0.

Since f(−M) < 0 and f(M) > 0, by Intermediate Value Theorem, there exists

N between −M and M such that f(N) = 0.

lemma 3.5 Every quadratic polynomial in C[x] splits completely over C.

Proof

It suffices to consider monic quadratic polynomial of the form x2 + bx + c.. To

show that this polynomial splits over C, we need show that
√
b2 − 4c ∈ C. If

b2 − 4c is 0, then we are done. Next, by writing b2 − 4c = reiθ, we conclude that

±
√
b2 − 4c = ±

√
reiθ/2 ∈ C.

We are finally ready to prove the Fundamental Theorem of Algebra.

theorem 3.6 Every nonconstant f(x) ∈ C[x] splits completely over C.

Proof

The proof follows a strategy of Euler and a clever idea first used by Laplace. Let

n be the degree of f . If n is odd, then by By Theorem 3.3, it suffices to prove

that Theorem 3.4, f has a root in C.

Now, suppose n is even. Write n = 2mk where m ≥ 1 and k is an odd positive

integer. We want to prove the theorem for even n by induction on m. By Theorem

3.2, we know that there exists a field extension L of F such that

f(x) =

n∏
j=1

(x− αj).

Following Laplace’s clever idea, we consider the polynomial

gλ(x) =
∏

1≤i<j≤n

(x− (αi + αj) + λαiαj) .

Note that the degree of g(x) is n(n− 1)/2 = 2m−1(2mk − 1). We will show that

gλ(x) ∈ R[x], i.e., the coefficients of gλ(x) are real numbers.

Consider the polynomial

Gλ(x) =
∏

1≤i<j≤n

(x− (xi + xj) + λxixj) .
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Note that

(k `) ◦ (xi + xj) = xi + xj , (k `) ◦ (xixj) = xixj if i, j 6∈ {k, `},
(k `) ◦ (xk + xj) = x` + xj , (k `) ◦ (xkxj) = x`xj if j 6∈ {k, `},
(k `) ◦ (x` + xj) = xk + xj , (k `) ◦ (x`xj) = xkxj if j 6∈ {k, `},
(k `) ◦ (xk + x`) = x` + xk, (k `) ◦ (xkx`) = x`xk.

Therefore, Sn “acts trivially” on Gλ(x) which implies that

Gλ(x) =

n(n−1)/2∑
k=0

pk(x1, · · · , xn)xk,

where pk(x1, · · · , xn) are symmetric polynomials in x1, x2, · · · , xn. This implies

that

pk(x1, · · · , xn) ∈ R[σn,1(x1, · · · , xn), · · · , σn,n(x1, · · · , xn)].

Under the evaluation map Eα1,··· ,αn , we deduce that

gλ(x) =

n(n−1)/2∑
k=0

pk(α1, · · · , αn)xk.

Note that pk(α1, · · · , αn) can be expressed in terms of σn,j(α1, · · · , αn), 1 ≤ j ≤
n, which are the coefficients of f(x) up to ±1. Since f ∈ R[x],

σn,j(α1, · · · , αn) ∈ R, 1 ≤ j ≤ n,

and therefore pk(α1, · · · , αn) ∈ R. Hence, gλ(x) ∈ R[x].

Now, if m = 1, then the degree of gλ is odd and gλ has a root in C by

Theorem 3.4. We conclude that if m = 1 and λ ∈ R, then there exist i, j such

that αi + αj − λαiαj ∈ C since gλ(x) has a root in C. Note that there are

infinitely many λ and there are finitely many pairs (αi, αj), i, j = 1, · · · , n. This

implies that there exists γ 6= δ such that

αi + αj − γαiαj ∈ C

and

αi + αj − δαiαj ∈ C.

This implies that

(γ − δ)αiαj ∈ C.

Since γ 6= δ ∈ R, αiαj ∈ C. Now, αi+αj−γαiαj ∈ C implies that αi+αj ∈ C.

Therefore, the polynomial

(x− αi)(x− αj) = x2 − (αi + αj)x+ αiαj ∈ C[x].

We know that from Lemma 3.5, αi, αj ∈ C. Hence, f has a complex root (the

proof shows that it has two complex roots) and the proof of the theorem is

complete. This completes the proof that if the degree of f is 2k where k is odd,
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then f has a root in C. Next, suppose the assertion is true for polynomials in

R[x] of degree 2m−1k where k is odd. If f has degree 2ms where s is odd, then

gλ(x) ∈ R[x] will have degree 2m−1t where t is odd. Then by induction, gλ has a

root in C. By exactly the same argument as in the case for m = 1, we conclude

that f has a root in C.



4 Finite extensions and Algebraic
extensions

Recall that an extension of a field F consists of a field L and a ring homomor-

phism

ϕ : F → L.

We identify F with ϕ(F ) and we will write a field extension as F ⊂ L.

4.1 Algebraic numbers and transcendental numbers

definition 4.1 Let L be a field extension of F and α ∈ L. We say that α is

algebraic over F if there exists a nonconstant f(x) ∈ F [x] such that f(α) = 0.

An α that is not algebraic over F is said to be transcendental over F .

example 4.1 The numbers
√

2 and e2πi/n, where n ∈ Z+ are algebraic. The

numbers π and e are transcendental.

Given two algebraic numbers a and b, we would expect a + b and ab to be

algebraic. However, a polynomial f(x) for which a + b is a root may be rather

complicated compared to the polynomial equations satisfied by a and b. For

example,
√

2 is a root of x2−2 and
√

3 is a root of x2−3. The minimal polynomial

satisfied by
√

2 +
√

3, namely x4 − 10x2 + 1, is not as simple as the polynomials

x2−2 and x2−3. It is therefore almost impossible to show that sum and product

of two algebraic numbers are algebraic by finding polynomial equations satisfied

by these numbers. New concepts need to be introduced before we can establish

the facts that sum and product of algebraic numbers are algebraic.

4.2 Minimal polynomials

Given α ∈ L, there exists many non-constant polynomial f(x) for which f(α) =

0. Among these polynomials, we choose a “special” one for α.
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lemma 4.1 Let α be algebraic over F . Then there is a unique non-constant

monic polynomial p(x) ∈ F [x] such that

(a) α is a root of p(x),

(b) If f(x) ∈ F [x] is such that f(α) = 0, then p(x) divides f(x).

Proof

Choose a polynomial p(x) with smallest degree such that p(α) = 0. We can

assume that p(x) is monic. Condition (a) is satisfied by p(x). Suppose f(x)

is not divisible by p(x). Then by division algorithm for polynomials over F ,

p(x) = q(x)p(x)+r(x) where 0 < degr(x) < degp(x). This implies that r(α) = 0.

But the minimality of the degree of p(x) contradicts the existence of r(x).

To prove uniqueness, we note that if p(x) and p1(x) are polynomials satisfy-

ing conditions (a) and (b). Then p(x) divides p1(x). This implies that p(x) =

p1(x)u(x). But p1(x) divides p(x) implies that p(x) = v(x)p1(x). Hence, p(x) =

p(x)u(x)v(x). This implies that u(x)v(x) = 1, or p(x) = ±p1(x). Since p(x) and

p1(x) are monic, we must conclude that p(x) = p1(x).

definition 4.2 Let F be a field and L be a field extension of F . Let α ∈ L be

algebraic over F . The monic polynomial p(x) ∈ F [x] with smallest degree such

that p(α) = 0 is called the minimal polynomial of α over F . We will use the

notation minF (α) for the polynomial p(x).

Remark 4.1 Let α ∈ L be algebraic over F . We observe that p(x) = minF (α) is

irreducible over F . This is because if p(x) were reducible, then p(x) = g(x)h(x)

and either g(α) = 0 or h(α) = 0. This contradicts the minimality of the degree

of p(x). Conversely, if f(x) is irreducible over F and f(α) = 0, then p(x) divides

f(x). But this forces f(x) = p(x) since f(x) is irreducible. Therefore, we may

view p(x) is the irreducible monic polynomial over F with α as one of its zeroes.

4.3 Adjoining elements

definition 4.3 Let L be a field extension of F and α1, · · · , αn ∈ L. Define

F [α1, · · · , αn] = {h(α1, · · · , αn)|h(x1, · · · , xn) ∈ F [x1, · · · , xn]}.
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Note that

F [α1, · · · , αn] = Eα1,··· ,αn(F [x1, · · · , xn]).

Let

F (α1, · · · , αn) = {γ/β|γ, β ∈ F [α1, · · · , αn], β 6= 0}.

The following lemma gives a characterization of F (α1, · · · , αn).

lemma 4.2 The set F (α1, · · · , αn) is the smallest subfield of L containing F

and α1, · · · , αn.

Proof

The set F (α1, · · · , αn) is a subfield of L. We check that 0 ∈ F [α1, · · · , αn]. If

a, b ∈ F [α1, · · · , αn], then ab, a + b,−a ∈ F [α1, · · · , αn]. Since L is a field, for

any nonzero a ∈ F [α1, · · · , αn], 1/a ∈ L. This implies that F (α1, · · · , αn) is a

subfield of L.

SupposeK is a field containing F and α1, · · · , αn. SinceK is a field, p(α1, · · · , αn) ∈
K for all p(x1, · · · , xn) ∈ F [x1, · · · , xn]. This means that F [α1, · · · , αn] ∈ K.

Since K is a field, for h(α1, · · · , αn) ∈ K, 1/h(α1, · · · , αn) ∈ K and therefore,

g(α1, · · · , αn)/h(α1, · · · , αn) ∈ K. This implies F (α1, · · · , αn) ⊂ K.

We say that the field F (α1, · · · , αn) is obtained from F by adjoining α1, · · · , αn
where αj , 1 ≤ j ≤ n belongs to a field extension L of F .

corollary 4.3 If F ⊂ L and α1, · · · , αn ∈ L, then

F (α1, · · · , αn) = F (α1, · · · , αr)(αr+1, · · · , αn)

for any 1 ≤ r ≤ n− 1.

Proof

The field F (α1, · · · , αr)(αr+1, · · · , αn) contains F and αj , 1 ≤ j ≤ n and hence

it contains F (α1, · · · , αn). Next, F (α1, · · · , αr) is contained in F (α1, · · · , αn)

and αr+1, · · · , αn ∈ F (α1, · · · , αn). Hence,

F (α1, · · · , αr)(αr+1, · · · , αn) ⊂ F (α1, · · · , αn).

example 4.2 It is useful to represent F (α1, · · · , αn) as

F (α1, · · · , αr)(αr+1, · · · , αn). The field Q(
√

2,
√

3) can now be written as
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Q(
√

2)(
√

3) and viewed as being obtained by first adjoining
√

2 to Q followed

by adjoining
√

3 to Q(
√

2).

We will next show that if α1, · · · , αn are algebraic over F , then

F [α1, · · · , αn] = F (α1, · · · , αn).

We begin with the case when n = 1.

lemma 4.4 Assume that F ⊂ L is a field extension, and let α ∈ L be alge-

braic over F with minimal polynomial p(x) ∈ F [x]. Then there is a unique ring

isomorphism

F [α] ' F [x]/p(x)F [x]

that is identity on F and maps to the coset x+ p(x)F [x].

Proof

Consider the ring homomorphism ϕ : F [x] → L that sends h(x) to h(α) ∈ L.

The image of ϕ is F [α]. As for the kernel, we suppose h(x) is sent to 0. This

means that h(α) = 0 and therefore p(x) must divide h(x). Therefore the kernel

of ϕ is p(x)F [x]. If h(x) ∈ p(x)F [x] then h(α) = 0 and this implies that p(x)F [x]

is contained in the kernel of ϕ and we have

kerϕ = p(x)F [x].

By first isomorphism theorem for rings, we conclude that there is an isomorphism

ϕ̃ : F [x]/p(x)F [x]→ F [α].

The inverse of ϕ̃ is ψ from F [α] to F [x]/p(x)F [x] defined by

ψ(α) = x+ p(x)F [x], ψ(r) = r + p(x)F [x], r ∈ F.

Note that F is isomorphic to F ′ = {a + p(x)F [x]|a ∈ F} which is a subfield of

F [x]/p(x)F [x]. This shows that ψ is “identity” on F . Finally, uniqueness follows

since a ring homomorphism defined on F [α] is determined by its values on F

and α.

theorem 4.5 Assume that L is a field extension and let α ∈ L. Then α is

algebraic over F if and only if F [α] = F (α).

Proof

If α is algebraic over F , then by previous Lemma, F [α] is a field which contains
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both F and α. By minimality of F (α), we conclude that F (α) ⊂ F [α]. Now,

clearly, F [α] ⊂ F (α).

Conversely, suppose F (α) = F [α]. Then α−1 ∈ F [α] and this implies that α

satisfies a polynomial equation over F and hence, α is algebraic over F .

theorem 4.6 Let F ⊂ L be a field extension. Let α1, · · · , αn ∈ L that are

algebraic over F . Then

F [α1, · · · , αn] = F (α1, · · · , αn).

Proof

It suffices to show that F [α1, · · · , αn] is a field. We may use induction on n. The

case k = 1 is already proved. When k = 2, we have F [α1][α2] ' F [α1][x]/(q(x)),

where q(x) is minF [α1](α2) and hence F [α1][α2] is a field. It remains to show

that F [α1][α2] = F [α1, α2]. This follows from the fact that a polynomial in α1

and α2 can be written as a0 + a1α2 + · · · + a`α
`
2 with aj ∈ F [α1], 0 ≤ j ≤ `.

Conversely, any elements in the above form is an element in F [α1, α2]. The case

where k = n − 1 implies k = n is proved in the same way as k = 1 implies

k = 2.

We end this section with the following definition:

definition 4.4 A field extension L of F of the form L = F (α) for some α ∈ L
is called a simple extension.

4.4 Gauss Lemma and Eisenstein Criterion

In general, given a polynomial over Q, we do not have an efficient algorithm to

determine the reducibility of the polynomial. In this section, we give a test of

irreducibility for a certain collection of polynomials. We first begin with Gauss

Lemma:

theorem 4.7 Suppose f(x) ∈ Z[x] is nonconstant and f(x) = g(x)h(x) where

g(x), h(x) ∈ Q[x], then there exists g̃(x), h̃(x) ∈ Z[x] such that f(x) = g̃(x)h̃(x).

Proof

Let g(x) =
r

s
g1(x) where g1(x) ∈ Z[x] and r, s ∈ Z. This is possible by consid-

ering the greatest common divisor of the numerators of the coefficients of xj ,

0 ≤ j ≤ deg g, of g and the least common multiple of the denominators of the
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coefficients of xj ,0 ≤ j ≤ deg g, of g. Note that the greatest common divisor of

the coefficients of xj , 0 ≤ j ≤ deg g1, of g1 is 1. Similarly, we may write

h(x) =
t

u
h1(x)

with h1(x) ∈ Z[x] and t, u ∈ Z. Write

f(x) =
rt

su
g1(x)h1(x)

with g1(x), h1(x) ∈ Z[x]. To show that f(x) is reducible over Z, it suffices to

show that su divides rt. To show that this is true, we show that if su = pak with

(p, k) = 1, then pa divides rt. Write

g1(x) = b`x
` + · · ·+ b0

and

h1(x) = cmx
m + · · ·+ c0.

Since the coefficients of g1(x) are relatively prime, there exists a smallest non-

zero integer i such that p does not divide bi, in other words, p|bµ, 0 ≤ µ < i.

Similarly, there exists a smallest non-zero integer j such that p does not divide

cj and p|cν , 0 ≤ ν < j. Write

g1(x)h1(x) =

m+∑̀
ν=0

dνx
ν

where

dν =

ν∑
ω=0

bωcν−ω.

Observe that since

di+j = b0ci+j + b1ci+j−1 + · · ·+ bi−1cj+1 + bicj + bi+1cj−1 + · · · bi+jc0,

the term bicj is not divisible by p and therefore (p, di+j) = 1. This implies that

(pa, di+j) = 1. Now, by considering the coefficient of xi+j of the polynomials on

both sides of

suf(x) = rtg1(x)h1(x),

we conclude that pa|(rt)di+j and by Euclid’s Lemma, we conclude that pa|(rt)
since (pa, di+j) = 1. This completes the proof that f is reducible over Z since

f =

(
rt

su
g1(x)

)
h1(x).

The following Corollary is an immediate consequence of Gauss’ Lemma.
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corollary 4.8 If f(x) ∈ Z[x] is nonconstant and reducible over Q, then

f(x) = g(x)h(x) with g(x), h(x) ∈ Z[x].

We now prove Eisenstein criterion.

theorem 4.9 Let f(x) = anx
n + an−1x

n−1 + · · ·+ a0 with n ∈ Z+. Let p be

a prime number that does not divide an. If p divides aj for 0 ≤ j ≤ n − 1 and

p2 does not divide a0, then f(x) is irreducible over Q[x].

Proof

Suppose f(x) is reducible in Q[x]. Then by Gauss lemma, f(x) is reducible in

Z[x], say, f(x) = g(x)h(x). Modulo p, we obtain the factorization f(x) = anx
n

in Z/pZ[x]. The ring Z/pZ[x] is a UFD and we see that f(x) is divisible only by

x. In other words, g(x) = cx` and h(x) = dxm. This implies that a0 is divisible

by p2, which is a contradiction.

example 4.3 Use Eisenstein criterion to show that if p is a prime, then xp−1+

· · ·+ 1 is irreducible over Q.

theorem 4.10 Let p be prime. Then f(x) = xp − a ∈ F [x] is irreducible over

F if and only if f(x) has no roots in F .

Proof

One direction is clear. If f(x) is irreducible over F , then f(x) has no root in F .

For if f(x) has a root α ∈ F then x− α divides f(x). Next, assume that f(x) is

reducible over F and we will show that f(x) has a root in F . By Theorem 3.2,

there exists L such that f(x) splits completely. Let f(x) = (x− α1) · · · (x− αp)
where αj ∈ L for 1 ≤ j ≤ p. If α1 = 0 then f(x) has a root in F . Hence α1 6= 0

and let ζj = αj/α1. Then αpj = a = αp1 implies that ζpj = 1. This follows that

f(x) =

p∏
j=1

(x− ζjα1),

where ζ1 = 1. This implies that if f(x) is reducible over F , then there is a

polynomial of the form
∏s
k=1(x − ζjkα1) that lies in F [x] and divides f(x).

Assume the polynomial is of the form (x − ζj1α1)(x − ζj2α1) · · · (x − ζjsα1).

This means that ζj1ζj2 · · · ζjsαs1 ∈ F . Since s < p, we may find n,m such that
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sn+ pm = 1. Therefore,

(ζj1ζj2 · · · ζjs)
n
α1 = (ζj1ζj2 · · · ζjs)

n
αsn+pm1 = (ζj1ζj2 · · · ζjsαs1)

n
am ∈ F.

But ((ζj1ζj2 · · · ζjs)
n
α1)

p
= a and so, F contains a root of f(x).

Remark 4.2 In the case when F is real and p is an odd prime, we know that

xp − a = 0 can have only one real root, namely, p
√
a. By the above theorem, we

deduce that xp − a is irreducible over F if and only if p
√
a 6∈ F.

4.5 The degree of a field extension

If L is a field extension of F , then L can be viewed as a vector space over F .

This motivates the following definitions.

definition 4.5 Let F ⊂ L be a field extension. Then L is a finite extension

of F if L is a finite dimensional vector space over F .

definition 4.6 Suppose L is a finite field extension of F , then the degree of

L over F , denoted by [L : F ] is the dimension of L viewed as a finite dimensional

vector space over F , The degree [L : F ] = ∞ if L is not a finite dimensional

space over F .

lemma 4.11 Let F ⊂ L be a field extension. The degree [L : F ] = 1 if and

only if L = F.

Proof

If [L : F ] = 1 then L is a one dimensional vector space over F and hence

L = F . Suppose L = F , then the dimension of L over F is 1. This implies that

[L : F ] = 1.

theorem 4.12 Suppose L is a field extension of F and α ∈ L. Then α is

algebraic over F if and only if [F (α) : F ] is finite.
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Proof

If α is algebraic over F , then any elements in F (α) can be written as an F -

linear combinations of 1, α, · · · , αn−1, where n is the degree of minF (α). This

implies that F (α) is a finite dimensional vector space over F and therefore,

[F (α) : F ] is finite. Suppose [F (α) : F ] is finite. Then 1, α, · · · , αj , · · · , cannot all

be independent over F . Hence, there exists a polynomial p(x) such that p(α) = 0.

This implies that α is algebraic over F .

theorem 4.13 Suppose F ⊂ L is a field extension and α ∈ L is algebraic. If

n is the degree of minF (α) then 1, α, · · · , αn−1 forms a basis of F (α) over F and

[F (α) : F ] = n.

Proof

Suppose the degree of p(x) = minF (α) is n. We claim that 1, α, · · · , αn−1 are

independent over F . Suppose not. Then there exists a relation with 0 < m ≤ n−1

such that

b0 + b1α+ · · ·+ bmα
m = 0.

This means that p(x) divides b0 + b1x + · · · + bmx
m, which is impossible since

degp(x) = n. Hence, 1, α, · · · , αn−1 are linearly independent over F .

Next, if β ∈ F (α) = F [α] then

β = c0 + c1α+ · · ·+ cnα
n + · · ·+ csα

s, s ≥ n.

Let g(x) = c0 + c1x+ · · ·+ csx
s. By the Quotient-Remainder Theorem, we find

that

g(x) = p(x)q(x) + r(x)

where r(x) = 0 or 0 ≤ deg(r(x)) ≤ n − 1. This implies that β = g(α) = r(α)

and β is an F -linear combination of 1, α, · · · , αn−1. This implies that F [α] is

spanned by 1, α, · · · , αn−1 and so, [F (α) : F ] = n.

theorem 4.14 Let L be a field extension of F and α ∈ L. The element α is

algebraic over F if and only if [F (α) : F ] is finite.

Proof

If α is algebraic over F then [F (α) : F ] = deg(minF (α)) is finite. Conversely, if

[F (α) : F ] is finite, we know that the elements in {1, α, α2, · · · , α` · · · } cannot

be linear independent. Therefore, there exists m such that

αm + am−1α
m−1 + · · ·+ a1α+ a0 = 0, aj ∈ F for 0 ≤ j ≤ m.

This implies that α is algebraic over F .
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4.6 The Tower Theorem

theorem 4.15 Suppose we have fields F ⊂ K ⊂ L.

(a) If [K : F ] =∞ or [L : K] =∞ then [L : F ] =∞.

(b) If [K : F ] <∞ and [L : K] <∞ then [L : F ] = [L : K][K : F ].

Proof

We prove the contrapositive version of (a). If [L : F ] is finite, then [K : F ] is

finite since K is a subspace of L over F . Let L be spanned by {αj |1 ≤ j ≤ n}
over F . Let α ∈ L. Then α =

∑n
j=1 fjαj . Now, fj ∈ F ⊂ K. This shows that

L can be written as a K-linear combination of αj , 1 ≤ j ≤ n. This implies that

[L : K] is finite.

To prove (b), let m = [K : F ] and n = [L : K]. Let {αj |1 ≤ j ≤ m} be a basis

of K over F and {βk|1 ≤ k ≤ n} be a basis of L over K respectively. We claim

that the basis of L over F is {αjβk|1 ≤ j ≤ m, 1 ≤ k ≤ n}.
For α ∈ L, we have

α =

n∑
k=1

νkβk,

where νk ∈ K. But νk can be expressed in terms of αj , 1 ≤ j ≤ m over F . Hence

α is an F -linear combinations of elements in {αjβk|1 ≤ j ≤ m, 1 ≤ k ≤ n}.
We now prove that the elements in {αjβk|1 ≤ j ≤ m, 1 ≤ k ≤ n} are linearly

independent over F . Suppose ∑
1≤j≤m
1≤k≤n

µj,kαjβk = 0.

Since the elements in {βk|1 ≤ k ≤ n} are linearly independent over K, we

conclude that for each k, ∑
1≤j≤m

µj,kαj = 0.

The elements in {αj |1 ≤ j ≤ m} are linearly independence and this forces

µj,k = 0, 1 ≤ j ≤ m. Since this is true for any k between 1 and n, we conclude

that µj,k = 0, 1 ≤ j ≤ m, 1 ≤ k ≤ n. Therefore the elements in {αjβk|1 ≤ j ≤
m, 1 ≤ k ≤ n} are linearly independent over F and

[L : F ] = [L : K][K : F ].

By Theorem 4.14, α is algebraic if and only if [F (α) : F ] < ∞. Let α and β

be algebraic over F . Then [F (α) : F ] <∞ and [F (α, β] : F (α)] <∞ (since β is

algebraic over F (α) if it is algebraic over F ). Therefore by the Tower Theorem,
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[F (α, β) : F ] < ∞. Now, both α − β and α/β, β 6= 0, are elements in F (α, β).

By Theorem 4.15 (a), [F (α − β) : F ] < ∞ and [F (α/β) : F ] < ∞ and by

Theorem 4.14, α − β and α/β are algebraic over F . This means that the set

of algebraic numbers over F forms a field. We have therefore established the

following theorem:

theorem 4.16 Let F ⊂ L be a field extension. The set of elements in L which

is algebraic over F forms a subfield of L.

Remark 4.3 We can now conclude that if α, β ∈ L is algebraic over F , then αβ

and α± β are algebraic over F . We also have αβ−1 is algebraic when β 6= 0.

4.7 Algebraic extensions

In the previous section, we have seen that if F ⊂ L is a field extension and α ∈ L
is algebraic over F , then F (α) is a finite extension over F . Theorem 4.15 indicates

that if β ∈ F (α), then F (β) is finite over F and therefore by Theorem 4.14, β is

algebraic over F . In other words, F (α) is a field for which every elements in is

algebraic over F . This motivates the next definition.

definition 4.7 A field extension F ⊂ L is algebraic if every element of L is

algebraic over F .

We aim to show the following result connecting finite extension and algebraic

extension over F .

theorem 4.17 If L is a finite extension over F , then L is an algebraic extension

over F .

Proof

Suppose α ∈ L. Then F (α) is a finite extension over F since L is finite over F .

Therefore, α is algebraic over F . This implies that L is an algebraic extension of

F .

The converse is false. The collection of all algebraic numbers over Q is an

algebraic extension over Q, denoted by Q. Note that if p is an odd prime and
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αp ∈ Q is a root of xp−1 + xp−2 + · · · + 1, then [Q(αp) : Q] = p. If we assume

that [Q : Q] = N , then we would obtain a contradiction by letting p > N since

[Q : Q] = N ≥ [Q(αp) : Q] = p > N.

The above discussion shows that in order to determine if an algebraic extension

is finite, thus providing a “converse” to Theorem 4.17, we need one additional

condition. This is reflected in the following theorem:

theorem 4.18 Let F ⊂ L be a field extension. The degree [L : F ] <∞ if and

only if there are α1, · · · , αn ∈ L, algebraic over F and L = F (α1, · · · , αn).

Proof

Suppose [L : F ] < ∞. Then there exists α1, · · · , αn in L, linearly independent

over F and spans L as a vector space over F . Note that L = Fα1 + · · · +

Fαn ⊂ F (α1, · · · , αn). But L contains F and {αj |1 ≤ j ≤ n} and so it contains

F (α1, · · · , αn). Hence L = F (α1, · · · , αn).

Conversely, suppose L = F (α1, · · · , αn) = F (α1, · · · , αn−1)(αn), where the

last equality follows from Corollary 4.3. We observe that

[F (α1, · · · , αn−1)(αn) : F (α1, · · · , αn−1)] <∞

since αn is algebraic over F (α1, · · · , αn−1) and by induction hypothesis, we may

assume that [F (α1, · · · , αn−1) : F ] <∞. Hence, by Theorem 4.15, [F (α1, · · · , αn) :

F ] <∞. This completes the proof of the theorem.

theorem 4.19 Let F ⊂ K ⊂ L. If α ∈ L is algebraic over K and K is algebraic

over F , then α is algebraic over F .

Proof

If α ∈ L is algebraic over K, then α satisfies a polynomial equation of the form

αm + am−1α
m−1 + · · ·+ a1α+ a0 = 0 (4.1)

with aj ∈ K for all 0 ≤ j ≤ m − 1. Since K is algebraic over F , the aj ’s are

algebraic over F and by Theorem 4.18, we conclude that F (a0, · · · , am−1) is a

finite field extension of F . Note that by (4.1), α is algebraic over F (a0, · · · , am−1)

and therefore F (a0, · · · , am−1)(α) is a finite extension of F (a0, · · · , am−1). By

Theorem 4.15, we conclude that F (a0, · · · , am−1)(α) is a finite extension of F . By

Theorem 4.18, we conclude that F (a0, · · · , am−1, α) is algebraic. In particular,

α ∈ F (a0, · · · , am−1, α) is algebraic over F .

As a corollary, we conclude that
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corollary 4.20 If F ⊂ K ⊂ L where L is algebraic over K and K is algebraic

over F , then L is algebraic over F .

Proof

Let α ∈ L. Since α is algebraic over K and K is algebraic over F , α is algebraic

over F and this holds for any α ∈ L. This implies that L is algebraic over F .



5 Splitting fields and Normal
extensions

5.1 Splitting fields

Let F be a field. We have seen in Theorem 3.2 that if f(x) ∈ F [x] then there

exists a field extension L of F such that f(x) splits completely. This motivates

our next definition.

definition 5.1 Let f(x) ∈ F [x] with deg(f) = n > 0. A field extension L of

F is a splitting field of f(x) over F if

(a) f(x) = c(x− α1) · · · (x− αn) where c ∈ F and αj ∈ L for 1 ≤ j ≤ n,

(b) L = F (α1, · · · , αn).

example 5.1 The field Q(
√

2,
√

3) is a splitting field of (x2 − 2)(x2 − 3) over

Q. The field Q(i, 21/4) is the splitting field of x4 − 2 but the field Q(21/4) since

i21/4 6∈ Q(21/4).

From the example Q(i, 21/4), we observe that if L is the splitting field of f(x)

of degree n over F , the degree of L over F is not necessarily n. The following

result gives an upper bound for [L : F ] in terms of the degree of f(x).

theorem 5.1 Let f(x) be a polynomial of degree n over F and L be the

splitting field of f(x) over F . Then [L : F ] ≤ n!.

Proof

We want to show that for any field F and any polynomial over F of degree n, the

splitting field L of f(x) satisfies [L : F ] ≤ n!. We may assume f(x) to be monic.

We establish the inequality using induction on n. If n = 1, [L : F ] = 1 and the

conclusion is true. Suppose the inequality is true for polynomial of degree n− 1.

Let f(x) be a monic polynomial of degree n. Let L be a splitting field of f(x)

over F . Then L = F (α1, · · · , αn) where α1, · · · , αn are the roots of f(x). Write
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f(x) = (x− α1)g(x), where g(x) = b0 + b1x+ · · ·+ bn−2x
n−2 + xn−1. From

f(x) = a0+a1x+· · ·+an−1xn−1+xn = (x−α1)(b0+b1x+· · ·+bn−2xn−2+xn−1),

we find that

aj = −α1bj + bj−1.

Note that since b0α1 = a0, we deduce that b0 ∈ F (α1). By induction on j,

we deduce that bj ∈ F (α1) and therefore g(x) ∈ F (α1)[x]. By induction, the

splitting field L of g(x) over F (α1) satisfies [L : F (α1)] ≤ (n−1)!. Together with

[F (α1) : F ] ≤ n, we conclude that

[L : F ] ≤ n!.

5.2 Uniqueness of splitting fields

We next study the uniqueness of splitting fields. Note that both Q(
√

2) and

Q[x]/(x2 − 2) are splitting fields of x2 − 2 over Q. The key point is that while

they are not the same, they are isomorphic.

theorem 5.2 Let ϕ be an isomorphism from the field F1 to the field F2.

Let f1(x) ∈ F1[x] and let f2(x) be obtained from f1(x) by applying ϕ to the

coefficients of f1(x). Suppose L1 and L2 are the splitting fields of f1(x) and

f2(x) over F1 and F2 respectively. Then there is an isomorphism

ϕ : L1 → L2

such that ϕ = ϕ
∣∣
F1
.

Proof

We prove by induction on n, the degree of f1(x). When n = 1, L1 ' F1 and

L2 ' F2 and we observe that ϕ = ϕ.

Suppose n > 1. We know that if α1, · · · , αn are roots of f1(x) then

L1 = F (α1, · · · , αn).

Consider F1 ⊂ F1(α1) ⊂ L1, where L1 is viewed as the splitting field of g(x) =

f1(x)/(x− α1) over F1(α1).

Step 1. Let h1(x) ∈ F1[x] be the minimal polynomial of α1 over F1. We know

that h1(x) must divide f1(x). Also

F1(α1) ' F1[x]/h1(x)F1[x].
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Step 2. We now find a root of f2(x) corresponding to α1. The map ϕ : F1 → F2

induces a ring homomorphism ϕ̃ : F1[x]→ F2[x] that takes f1(x) to f2(x). This

isomorphism takes irreducibles to irreducibles. In particular, h1(x) is mapped to

an irreducible factor h2(x) of f2(x). Since f2(x) splits completely in L2, we can

label the roots of f2(x) in L2 as β1, · · · , βn, where β1 is a root of h2(x).

Step 3. The root β1 of f2(x) gives an extension F2 ⊂ F2(β1) ⊂ L2, where L2 is

viewed as the splitting field of g2(x) = f2(x)/(x − β1) over F2(β1). Since h2(x)

is the irreducible polynomial of β1, we conclude that

F2(β1) ' F2[x]/h2(x)F2[x].

Step 4. Since ϕ̃ : F1[x]→ F2[x] sends h1(x) to h2(x), ϕ̃(h1(x)F1[x]) = h2(x)F2[x].

Therefore,

F1[x]/h1(x)F1[x] ' F2[x]/h2(x)F2[x].

By Steps 1 and 3, we obtain an isomorphism ϕ1 : F1(α1)→ F2(β1).

Step 5. Now, g1(x) = f1(x)/(x−α1) and g2(x) = f2(x)/(x−β1) have degree n−1

over F1(α1) and F2(β1) respectively and ϕ1 is an isomorphism from F1(α1) to

F2(β1). By induction hypothesis, we conclude that there exists an isomorphism

ϕ : L1 → L2 such that ϕ
∣∣
F1(α1)

= ϕ1. But ϕ1

∣∣
F1

= ϕ and this completes the

proof of the theorem.

corollary 5.3 If L1 and L2 are splitting fields of f(x) ∈ F [x] then there is

an isomorphism L1 ' L2 that is identity on F .

Proof

Apply Theorem 5.2 with ϕ as the identity map on F .

theorem 5.4 Let L be a splitting field of a polynomial in F [x]. Suppose

h(x) ∈ F [x] is an irreducible polynomial with degree at least 2 and has roots

α, β ∈ L. Then there is a field isomorphism σ : L→ L that is identity on F and

takes α to β.

Proof

We observe that

F (α) ' F [x]/h(x)F [x] ' F (β).

Therefore, there is an isomorphism ξ : F (α) → F (β) with the property that

ξ(α) = β. Now, L is the splitting field of h(x) and contains both F (α) and F (β).

By Theorem 5.2, we conclude that there is an isomorphism σ : L → L such

that σ
∣∣
F (α)

is an isomorphism from F (α) to F (β). Note that σ
∣∣
F (α)

= ξ. Hence,

σ(α) = β and the proof is complete.
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5.3 Finite fields as splitting fields of polynomials

In this section, we establish the following

theorem 5.5 If L is a finite field with pm elements, with p a prime and m a

positive integer, then L is the splitting field of xp
m −x ∈ Fp[x], where Fp denote

the finite field Z/pZ.

Proof

Let f(x) = xp
m − x. It is known that (see Remark 5.1) if L is a finite field,

then L − {0} is a cyclic multiplicative group. This implies that there exists an

element α ∈ L such that L = {0, αj |1 ≤ j ≤ pm − 1}. Observe that if β ∈ L
then βp

m − β = 0. This means that all elements in L are roots of f(x). These

are all the roots since the polynomial can have at most pm− 1 roots since it is a

polynomial over a field. Now any splitting field of f(x) must contain at least pm

elements. Since L contains exactly pm elements, L must be the splitting field of

f(x). This completes the proof of the theorem.

Since splitting fields of polynomials over a field F are isomorphic, we conclude

that any finite fields with pm elements are isomorphic.

Remark 5.1 Let L∗ = L− {0}. Let g ∈ L∗ and o(g) be the order of g. Let

m = max
g∈L∗

o(g).

If m = |L∗| then L∗ is cyclic. Suppose

m < |L∗|. (5.1)

By the structure theorem of finite abelian group,

L∗ ' Z/a1Z⊕ · · · ⊕ Z/a`Z,

with ai|ai+1, i = 1, · · · , `− 1. This means that m = a` and it also implies that if

α ∈ L∗, then α is a root of

xm = 1.

But in F [x] where F is a field, the number of solutions xm− 1 is at most m and

therefore, |L∗| ≤ m. This contradicts (5.1). Therefore L∗ is cyclic.

Another way of seeing that L∗ is cyclic is by using the identity∑
d|n

ϕ(d) = n. (5.2)

Let n = |L∗| and Cd be the number of elements in L∗ that has order exactly d.

If Cd is non-empty, then the element of order d generates a cyclic group with d



40 Splitting fields and Normal extensions

elements which are roots of xd − 1. Since F is a field, xd − 1 can have no more

than d elements. In other words, all elements of order d must be in Cd if |Cd| 6= 0.

If Cd is not empty then the total number of elements in Cd is exactly ϕ(d). This

is a result of the fact that if α has order d then αk has order d if and only if

(k, d) = 1. Now, every element in L∗ has an order. Therefore,

|L∗| = n =
∑
d|n

|Cd| ≤
∑
d|n

ϕ(d) = n,

where the last equality follows from (5.2). This implies that |Cd| = ϕ(d). In

particular, |Cn| = ϕ(n) and therefore, L∗ is cyclic since Cn is non-empty.

example 5.2 The fields F2[x]/(x3 + x+ 1)F2[x] and F2[x]/(x3 + x2 + 1)F2[x]

are isomorphic.

5.4 Normal extensions

Splitting field of a polynomial f(x) ∈ F [x] has an important property given as

follow:

theorem 5.6 Let L be a field extension over F which is a splitting field of

f(x). If g(x) is an irreducible polynomial which has a root in L then g(x) splits

completely in L.

Proof

We may suppose that f(x) and g(x) are monic and let f(x) = (x−α1) · · · (x−αn).

Then L = F (α1, · · · , αn). Suppose β is a root of g(x) in L. We need to prove

that all the roots of g(x) are also in L. Note that β ∈ L = F (α1, · · · , αn) =

F [α1, · · · , αn] and hence β = h(α1, · · · , αn) for some polynomial h(x1, · · · , xn) ∈
F [x1, · · · , xn]. Consider the polynomial

s(x) =
∏
τ∈Sn

(x− h(ατ(1), · · · , ατ(n)) ∈ L[x].

The roots of s(x) are all in L since α1, · · · , αn ∈ L. Furthermore, β is a root of

s(x) and if we can show that s(x) ∈ F [x] then we can conclude from g(x)|s(x)

that all the roots are in L.

Now consider the polynomial

S(x) =
∏
τ∈Sn

(x− h(xτ(1), · · · , xτ(n)).



5.4 Normal extensions 41

Note that we can write

S(x) =

n!∑
j=0

pj(x1, · · · , xn)xj ,

where

pj(x1, · · · , xn) = σn!,n!−j(h(xτ1(n), · · · , xτ1(n)), · · · , h(xτn!(n), · · · , xτn!(n))),

with τj ’s are distinct elements in Sn. Here the σm,j is the j-th elementary sym-

metric functions in m variables. Note that pj(xτ(1), · · · , xτ(n)) = pj(x1, · · · , xn)

and thus, pj(x1, · · · , xn) are symmetric for 0 ≤ j ≤ n−1. These polynomials can

therefore be expressed in terms of σn,j(x1, · · · , xn) for 0 ≤ j ≤ n− 1. Using the

evaluation map sending xj to αj , we conclude that pj(α1, · · · , αn) are in terms

of σn,j(α1, · · · , αn) which all lies in F . Therefore, s(x) ∈ F [x] and the proof is

complete.

The above property of splitting fields motivates the following definition:

definition 5.2 An algebraic extension L of F is normal if every irreducible

polynomial in F [x] that has a root in L splits completely in L.

Remark 5.2 Not all normal field extensions are splitting fields of some polyno-

mials. The field Q, the algebraic closure of Q is a normal extension that is not

a splitting field of any polynomial.

The following theorem characterizes splitting fields in terms of normal exten-

sion.

theorem 5.7 Suppose L is a field extension of F . Then L is the splitting field

of some polynomial f(x) ∈ F [x] if and only if L is normal and finite.

Proof

If L is a splitting field of f(x), then L = F (α1, · · · , αn) is finite by Theorem 4.18

or Theorem 5.1. By Theorem 5.6, L is normal.

Conversely, suppose L is normal and finite. Since L is finite, by Theorem 4.18,

L = F (α1, · · · , αn) where α1, · · · , αn are algebraic over F . Let p1(x), · · · , pn(x)

be irreducible polynomials such that for each i, αj is a root of pj(x). Let f(x) =

p1(x) · · · pn(x). We will show that L is the splitting field of f(x). Observe that

pj(x) has a root αj in L and L is normal. Hence, all the roots of pj(x) are in L.
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Let {β1, · · · , βs} be the roots of f(x) and let L′ be the splitting field of f(x),

namely, L′ = F (β1, · · · , βs). Note that

L = F (α1, · · · , αn) ⊂ L′

since {α1, · · · , αn} ⊂ {β1, · · · , βs}. But L′ ⊂ L since by normality of L, βj ’s,

1 ≤ j ≤ s, which are roots of pi(x), 1 ≤ i ≤ n are in L. This implies that L′ = L

and L is the splitting of f(x).
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6.1 Separable polynomials and separable extensions

Let F be a field. Given a monic nonconstant polynomial f(x) ∈ F [x] with split-

ting field L, we can write f(x) = (x− α1) · · · (x− αn). Note that αj , 1 ≤ j ≤ n,

are not always distinct. We will restrict our attention to polynomials that have

distinct roots in this section.

definition 6.1 A polynomial f(x) ∈ F [x] is separable if it is nonconstant

and its roots in a splitting field are all simple. Note that f(x) is separable if and

only if

∆(f) =
∏

1≤i<j≤n

(αi − αj)2 6= 0.

Remark 6.1 The above definition of separable polynomial is not standard. Most

books require separable polynomial to be irreducible.

Another tool we need is the formal derivative of a polynomial g(x) = anx
n +

· · ·+ a0 defined by

g′(x) = nanx
n−1 + · · ·+ a1.

Note that with this definition, one has

(fg)′ = f ′g + fg′

for any two polynomials in F [x]. We leave the proof of the “seemingly obvious”

statement (because of our knowledge of Calculus) as exercise.

The following theorem gives some characterizations of a separable polynomial.

theorem 6.1 Let f(x) be a monic and nonconstant in F [x]. The following are

equivalent:

(a) f(x) is separable,
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(b) ∆(f) 6= 0,

(c) f(x) and f ′(x) are relatively prime (i.e. gcd(f, f ′) = 1) in F [x].

Proof

If degree of f(x) is 1, then we define ∆(f) = 1. So ∆(f) 6= 0. Also (f, f ′) = 1.

So (a), (b), and (c) are equivalent to each other.

Assume that the degree of f(x) is greater than 1. We first show that (a) and

(b) are equivalent. Let α1, · · · , αn be roots of f(x) in some splitting field of f(x).

The definition of ∆(f) shows that ∆(f) 6= 0 if and only if the roots of f(x) are

distinct.

Next, we show the equivalence of (a) and (c). Let L be a splitting field of f(x)

over F . Let f(x) = (x− α1) · · · (x− αn). For each 1 ≤ i ≤ n,

f(x) = (x− αi)hi(x),

where

hi(x) =
∏
j 6=i

(x− αj).

Formally differentiating f(x), we find that

f ′(x) = (x− xi)h′i(x) + hi(x).

This implies that

f ′(αi) = hi(αi) =
∏
j 6=i

(αj − αi) 6= 0, (6.1)

since f(x) is a separable polynomial. If (c) is false, then f(x), f ′(x) have common

factor. This implies that there exist g(x) such that g(x) = (f(x), f ′(x)). Note

that g(x) divides f(x) and f ′(x) Therefore, g(αi) = 0 for some i and f ′(αi) = 0.

By (6.1), this implies that hi(αi) = 0, which is a contradiction.

Conversely, assuming (c) is true. Then

1 = A(x)f(x) +B(x)f ′(x)

for some A(x), B(x) ∈ F [x]. This implies that for 1 ≤ i ≤ n,

1 = A(αi)f(αi) +B(αi)f
′(αi)

which implies that f ′(αi)B(αi) = 1, or f ′(αi) 6= 0. This implies that for 1 ≤ i ≤
n, ∏

j 6=i

(αj − αi) 6= 0

and αj ’s are all distinct. This implies that f(x) is a separable polynomial.

definition 6.2 Let L be an algebraic extension of F .
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(a) α ∈ L is separable over F if minF (α) is a separable polynomial.

(b) L is a separable extension over F if every α ∈ L is separable over F .

lemma 6.2 A nonconstant polynomial f(x) ∈ F [x] is separable if and only if

f(x) is a product of irreducible polynomials, each of which is separable and no

two of which are multiple of each other.

Proof

Assume f(x) is separable. Then each factor of f(x) must have distinct roots in a

splitting field, then f(x) will not be separable. Hence, all irreducible polynomial

dividing f(x) is separable. Next, the irreducible polynomials dividing f(x) cannot

be identical or f(x) would have multiple roots.

Conversely, let f(x) = g1(x) · · · gs(x) where gj(x) are separable and irre-

ducible. Therefore gj(x) has distinct roots. If f(x) has multiple roots then there

exists i 6= j such that gi(x)|gj(x) and gj(x)|gi(x). Therefore gi(x) is a multiple

of gj(x).

lemma 6.3 Let f(x) ∈ F [x] be an irreducible polynomial of degree n. Then

f(x) is separable if

(a) F has characteristic 0, or

(b) F has characteristic p > 0 where p - n.

Proof

By Theorem 6.1, it suffices to show that (f(x), f ′(x)) = 1. Suppose F has char-

acteristic 0.

If (f(x), f ′(x)) = h(x) 6= 1 then there exists an α in the splitting field of

h(x) such that h(α) = f(α) = f ′(α) = 0. Since α is a root of f(x) and f(x) is

irreducible over F , f(x) must divide f ′(x). This is impossible since the degree

of f ′(x) is less than degree of f(x).

Next suppose that the characteristic of F is a prime p. We may assume that

f(x) is monic. If f(x) = xn+an−1x
n−1 + · · ·+a0, then f ′(x) = nxn−1 + · · ·+a1.

Since p - n, we find that f ′(x) is a polynomial of degree less than the degree of

f(x). Using the argument as in the case when the characteristic of F is 0, we

deduce that (f(x), f ′(x)) = 1 and hence f(x) is separable.

example 6.1 Let F be a field with characteristic 0. Show that every algebraic

extension of F is separable.
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Solution

Let L be an algebraic extension of F . Let α ∈ L. By Lemma 6.3, we deduce that

the minimal polynomial of α over F is separable. Hence L is separable.

definition 6.3 A field F is called a perfect field if every algebraic extension

of F is separable.

In the above example, we showed that if char F=0, then F is perfect. It can

be shown that if F is a finite field, F is perfect.

example 6.2 Let f(x) be any polynomial over F where F has characteristic

0. Show that f(x)/(f(x), f ′(x)) is separable.

Solution

Let f(x) = (x − α1)m1 · · · (x − αs)ms . Let g(x) = f(x)/(f(x), f ′(x)). To show

that g(x) is separable, it suffices to show that (f, f ′) is divisible by (x−αj)mj−1
but not by (x− αj)mj for j = 1, 2, · · · , s.

Now, write f(x) = (x− αj)mjfj(x), where fj(αj) 6= 0. Then

f ′(x) = mj(x− αj)mj−1fj(x) + (x− αj)mjf ′j(x).

This implies that αj is a zero of f ′(x) of order mj−1. So if h(x) = (f(x), f ′(x)),

αj is a zero of f ′(x) of order mj − 1 since

f ′(x) = (x− αj)mj−1(mjfj(x) + (x− αj)f ′j(x))

and (x − αj) does not divide fj(x). This concludes the fact that g is separable

since g = (x− α1) · · · (x− αs).

definition 6.4 A polynomial f ∈ F [x] is inseparable if it is not a separable

polynomial. In other words, it has root with multiplicity greater than 1.

example 6.3 Show that if F is a field with characteristic p, then xp − t ∈
Fp(t)[x] is an inseparable irreducible polynomial
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Solution

The polynomial xp − t is irreducible over Fp(t). This follows because t1/p does

not lie in Fp(t). Let a be a root of f(x) = xp − t in the splitting field of f(x)

over Fp(t). Then ap = t. This implies that f(x) = (xp − ap) = (x− a)p and f is

inseparable.

6.2 Theorem of the primitive element

theorem 6.4 Let L = F (α1, · · · , αn) be a finite extension where each of

αj is separable over F . Then there exists α ∈ L separable over F such that

L = F (α). Furthermore, if F is infinite, then α can be chosen to be of the form

α = t1α1 + · · ·+ tnαn for some tj ∈ F .

Remark 6.2 We observe that if the characteristic of F is 0, then we may remove

the condition “αj is separable over F .” This is because the minimal polynomial

of these αj ’s is separable.

Remark 6.3 Theorem 6.4 shows that if αj , 1 ≤ j ≤ n is separable over

F , then F (α1, · · · , αn) is a simple extension. In other words, there exists

β ∈ F (α1, · · · , αn) such that F (α1, · · · , αn) = F (β).

Proof

Let F be a field with finitely many elements. Then F is a field with characteristic

p for some prime p. Suppose L = F (α1, · · · , αn) is a finite extension where each

of αj is separable over F . Then L is a finite field extension of F and so, it is a

finite field. It is known that finite multiplicative group of L− {0} is cyclic. This

implies that if |F | = pe and [L : F ] = m, then there exists α ∈ L such that

L− {0} = {αj |1 ≤ j ≤ pem − 1}.

Note that F ⊂ L since elements in F is a root of

xp
em−1 = 1.

Hence, L = F (α). Note that α is separable over F since the polynomial xp
em−1−1

is separable. This completes the proof of the theorem when L is finite.

We now assume that F is infinite. Let L = F (α1, · · · , αn). We will use induc-

tion on n to show that there are t1, · · · , tn ∈ F such that
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(1) L = F (t1α1 + · · ·+ tnαn) and

(2) t1α1 + · · ·+ tnαn is separable over F .

We begin with the case n = 2. Given L = F (β, γ). Let f(x), g(x) ∈ F [x] be

minimal polynomials of β and γ respectively. f(x) could be the same as g(x).

Let ` = deg(f(x)) and m = deg(g(x)). Let E be a splitting field of f(x)g(x). Let

β = β1 and γ = γ1. Let β1, · · · , β` be the distinct roots of f(x) and γ1, · · · , γm
be the distinct roots of g(x). Since F is infinite, we can find λ ∈ F such that

λ 6= βi − βr
γs − γj

, 1 ≤ r, i ≤ `, r 6= i, 1 ≤ s, j ≤ m, s 6= j.

This implies that

βr + λγs 6= βi + λγj , r 6= i, s 6= j.

Therefore β + λγ 6= βi + λγj , 1 ≤ i ≤ `, 1 ≤ j ≤ m.
We first prove that F (β + λγ) = F (β, γ). The inclusion F (β + λγ) ⊂ F (β, γ)

is immediate. We want to show that β, γ ∈ F (β + λγ).

It suffices to show that γ ∈ F (β + λγ), for then β = β + λγ − λγ is also

contained in the field.

Since g(x) ∈ F [x], g(x) ∈ F (β+λγ)[x]. Next, f(β+λγ−λx) vanishes at x = γ

and f(β+λγ−λx) ∈ F (β+λ)[x]. Therefore, the gcd of g(x) and f(β+λγ−λx)

is a non-constant polynomial in F (β + λγ)[x].

Let h(x) = gcd(g(x), f(β + λγ − λx)). If degh(x) > 1 then there exists γ′ 6= γ

such that h(γ′) = 0. This implies that

f(β + λγ − λγ′) = 0

or

β + λγ = λγ′ + β′.

This contradicts our choice of λ. Hence the degree of h(x) is 1 and γ ∈ F (β+λγ)

and this completes the claim that F (β, γ) = F (β + λγ).

It remains to show that β + λγ is separable. Let p(x) ∈ F [x] be the minimal

polynomial of β + λγ over F . We must show that p(x) is separable. Let

s(x) =

m∏
j=1

f(x− λγj).

Note that β + λγ is a root of s(x) since f(β + λγ − λγ) = f(β) = 0. If S(x) =∏m
j=1 f(x−λxj), then for τ ∈ Sm, S(x) =

∏m
j=1 f(x−λxj) =

∏m
j=1 f(x−λxτ(j)).

So the coefficient of xk in S(x) must be a symmetric polynomial in x1, · · · , xm.

Therefore, under the evaluation map, we deduce that the coefficient of xk must

belong to F . Since s(x) ∈ F [x], we conclude that p(x) divides s(x).

Now,

s(x) =
∏̀
i=1

m∏
j=1

(x− (βi + λγj)).
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Note βi + λγj 6= βs + λγr for all i, j, r, s except when i = s and j = r. We

conclude that s(x) is a separable polynomial. This implies that p(x) is also

separable. Therefore the case n = 2 holds with t1 = 1 and t2 = λ.

Suppose now that the conclusion holds for any field of the form F (β1, · · · , βn−1),

that is, there exists s1, · · · , sn−1 such that

F (β1, · · · , βn−1) = F (s1β1 + · · ·+ sn−1βn−1)

and s1β1 + · · · + sn−1βn−1 is separable. Write L = F (α1, · · · , αn−1)(αn) =

F (ν, αn) where ν = t1α1 + · · · + tn−1αn−1 by induction hypothesis. By case

n = 2, we conclude that F (ν, αn) = F (ν + λn) for some λ ∈ F . Therefore,

L = F (t1α1 + · · · tn−1αn−1 + λαn).

Note that t1α1 + · · · tn−1αn−1 + λαn is separable since t1α1 + · · · + tn−1αn−1
and αn are separable.

Remark 6.4 We have seen that if L = F (α1, · · · , αn) where αj is separable

and L is finite, then L = F (α) for some separable α ∈ L. It turns out that

if L = F (α) is finite and α is separable then L is a separable extension. This

statement will be proved after introducing Galois extension.

example 6.4 The splitting field of x3 − 2 is L = Q(e2πi/3, 21/3). We can also

write L as Q(
√
−3 + 21/3) and so, L is simple.

example 6.5 In this example, we show the existence of a field extension

F (β, γ) which is not simple. Of course, in this case, β and γ are not separa-

ble over F . Let F = Fp(u, v) where u, v are independent variables and Fp is the

field of p elements. Let xp − u ∈ F [x]. We claim that xp − u is irreducible in

F [x]. We have seen that if xp − u is reducible then there exits β ∈ F = Fp(u, v)

such that βp − u = 0. If β = h(u, v)/`(u, v), then hp(u, v) = u`p(u, v) which is a

contradiction by considering the power of u. Therefore, if β is a root of xp − u,

then [F (β) : F ] = p. Now, consider xp − v as a polynomial in F (β)[x]. Again if

xp − v has a root γ ∈ F (β) then γ = w(β, v)/z(β, v) and γp = v implies that

wp(β, v) = vzp(β, v), a contradiction by considering the degree of v. Therefore,

[F (β, γ) : F ] = [F (β)(γ) : F (β)][F (β) : F ] = p2.

Next, suppose ν ∈ F (β, γ). Then

ν = g(β, γ)
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for some polynomial g(s, t) of two variables. This implies that

νp = gp(β, γ) = g(βp, γp) = g(u, v) ∈ F.

This implies that degree of minF (ν) is at most p, or [F (ν);F ] ≤ p. In other

words, F (β, γ) 6= F (ν) for all ν ∈ F (β, γ) and the field F (β, γ) is not simple.
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Let L be a field. An automorphism of L is a field isomorphism σ : L→ L.

definition 7.1 Let L be a finite field extension of F . Then Gal(L|F ) is the

set

{σ : L→ L|σ is an automorphism, σ(a) = a for all a ∈ F .}.

theorem 7.1 The set Gal(L|F ) is a group under composition.

Proof

If σ, τ ∈ Gal(L|F ) then στ ∈ Gal(L|F ). The identity map on L is the identity for

Gal(L|K). Sine σ is an isomorphism, σ−1 exists and finally associativity follows

from composition of functions.

lemma 7.2 Let L be a finite field extension. Fix σ ∈ Gal(L|F ). Let

h(x1, · · · , xn) ∈ F [x1, · · · , xn] and β1, · · · , βn ∈ L. Then

σ(h(β1, · · · , βn)) = h(σ(β1), · · · , σ(βn)).

In particular, σ(h(β)) = h(σ(β)).

Proof

This follows from the observation that if h(β1, · · · , βn) is a finite sum in terms

of β1, · · · , βn, namely, if

h(β1, · · · , βn) =
∑

1≤k1,··· ,kn≤N

αk1,··· ,knβ
k1
1 · · ·βknn

with αk1,··· ,kn ∈ F , then

σ(h(β1, · · · , βn)) =
∑

1≤k1,··· ,kn≤N

αk1,··· ,knσ(β1)k1 · · ·σ(βn)kn = h(σ(β1), · · · , σ(βn)).
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theorem 7.3 Let L be a finite field extension of L and σ ∈ Gal(L|F ). Then

(a) If h(x) ∈ F [x] is a nonconstant polynomial with α ∈ L as a root, then σ(α)

is another root of h(x) lying in L.

(b) If L = F (α1, · · · , αn), then σ is uniquely determined by its values on

α1, · · · , αn.

Proof

By Lemma 7.2, we find that

σ(h(α)) = h(σ(α)).

So if α is a root of h(x) then σ(α) is also a root of h(x). This implies (a).

To prove (b), let σ, τ ∈ Gal(L|F ). Suppose σ(αi) = τ(αi), i = 1, 2, · · · , n. Then

for β ∈ F (α1, · · · , αn),

β =
f(α1, · · · , αn)

g(α1, · · · , αn)
.

This implies that

σ(β) =
f(σ(α1), · · · , σ(αn))

g(σ(α1), · · · , σ(αn))

=
f(τ(α1), · · · , τ(αn))

g(τ(α1), · · · , τ(αn))
= τ(β).

Therefore, σ is uniquely determined by its values on α1, · · · , αn.

definition 7.2 Let α be algebraic over a field F . Let L be the splitting fields

of minF (α). The roots of minF (α) are called the conjugates of α.

theorem 7.4 If L is a finite extension of F , then Gal(L|F ) is finite.

Proof

By Theorem 4.18, L is finite implies that L = F (α1, · · · , αn), where each αj is

algebraic over F .

Let S = {γ ∈ L|γ is a conjugate of αj for some 1 ≤ j ≤ n}. Observe that S is

finite. Since σ is determined by its values on αj and since σ(αj) is a conjugate of

αj and that S is a finite, we conclude that there are finitely many possible σ’s.

Hence, Gal(L|F ) is finite.
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theorem 7.5 Suppose L1 and L2 are finite field extensions of F . Let ϕ be an

isomorphism from L1 to L2 that is identity on F . Then the map sending σ to

ϕσϕ−1 defines a group isomorphism from Gal(L1|F ) to Gal(L2|F ).

Proof

We first show that if σ ∈ Gal(L1|F ) then for β ∈ L2, ϕσϕ−1(β) ∈ L2. So

ϕσϕ−1 ∈ Gal(L2|F ). To show that the map sending σ to ϕσϕ−1 is an isomor-

phism, we observe that the inverse map is ϕ−1τϕ for τ ∈ Gal(L2|F ) and

ϕσ1σ2ϕ
−1 = ϕσ1ϕ

−1ϕσ2ϕ
−1.

definition 7.3 Let f(x) ∈ F [x]. The Galois group of f(x) over F is Gal(L|F )

where L is the splitting field of f(x) over F .

Remark 7.1 Suppose L1 ' L2 are both splitting fields of f(x) over F . Then by

Theorem 7.5, Gal(L1|F ) ' Gal(L2|F ) and so the Galois group of f(x) over F is

well defined up to isomorphism of splitting fields of f(x).

7.1 Galois groups of splitting fields

In this section, we prove an important fact about the splitting field of a separable

polynomial.

theorem 7.6 Let L be the splitting field of a separable polynomial f(x) ∈
F [x]. Then

|Gal(L|F )| = [L : F ].

Proof

Let α1, · · · , αn be roots of a separable polynomial f(x). Then αj are separable

over F since the minimal polynomial of αj divides f(x), which is separable. By

Theorem 6.4, L = F (β) where β ∈ L is separable over F . Let h(x) = minF (β).

Note that

F (β) = F [β] ' F [x]/h(x)F [x].

Therefore [L : F ] = m = deg(h(x)).
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To complete the proof of the theorem, we need to show that |Gal(L|F )| = m.

Now, β ∈ L and L is the splitting field of f(x). By Theorem 5.6, we conclude that

L is a normal extension and all the roots of h(x) lie in L. Let β1, · · · , βm, where

β1 = β, be roots of h(x) in L. Note that σ ∈ Gal(L|F ) is uniquely determined

by σ(β). There are m-choices for σ since σ(β) = βj for some j between 1 and

m. Therefore |Gal(L|F )| ≤ m. Next, given β and βj , we can find an element

τ ∈ Gal(L|F ) such that τ(β) = βj . This show that |Gal(L|F )| ≥ m. Therefore,

|Gal(L|F )| = m and this completes the proof of the theorem.

7.2 Permutations of roots

In this section, we relate Galois Groups to permutations of roots of separable

polynomials. Let n = deg(f). Then in a splitting field of a separable polynomial

f(x) ∈ F [x], we can write

f(x) = c(x− α1) · · · (x− αn).

For each σ ∈ Gal(L|F ), σ(αi) is a root of f(x). This implies that σ(αi) = ατ(i)
for some τ ∈ Sn. In this way, we can associate σ ∈ Gal(L|F ) to an element

τ ∈ Sn.

theorem 7.7 Let L be the splitting field of a separable polynomial f(x) with

deg(f) = n. The map Gal(L|F ) → Sn described above is a one to one group

homomorphism.

Proof

Write L = F (α1, · · · , αn) where α1, · · · , αn are roots of f(x). Suppose σ1, σ2 ∈
Gal(L|F ) with σi(αj) = ατi(j), i = 1, 2. Now, σ1σ2(αj) = σ1(ατ2(j)) = ατ1(τ2(j)).

Hence σ1σ2 corresponds to τ1τ2. Therefore the map is a homomorphism. to show

that the map is one to one. Suppose τ1 = τ2. Then σ1(αj) = ατ1(j) = ατ2(j) =

σ2(αj). This implies σ1 = σ2 since σ ∈ Gal(L|F ) is determined by its values

α1, · · · , αn.

corollary 7.8 If L is the splitting field of a separable polynomial f(x) ∈
F [x], then [L : F ]|n! where n = deg(f).

Proof

The group Gal(L|F ) is mapped into a subgroup of Sn and this implies that

|Gal(L|F )||n!.
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By Theorem 7.6, we conclude that

[L : F ]|n!.

Remark 7.2 Note that we have previously shown in Theorem 5.1 that if L is

a splitting field of a polynomial f(x) ∈ F [x], then [L : F ] ≤ n!. We have shown

here that if f(x) is irreducible and separable then [L : F ]|n!.

example 7.1 The subgroup {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} is transitive

while {(1), (1 2), (3 4), (1 2)(3 4)} is not transitive.

The main result in this section is the following theorem due to C. Jordan

discovered around 1870:

theorem 7.9 Let L be the splitting field of a separable polynomial f(x) ∈ F [x]

of degree n. Then the subgroup of Sn corresponding to Gal(L|F ) is transitive if

and only if f(x) is irreducible over F .

Proof

Suppose f(x) is irreducible with roots α1, · · · , αn ∈ L. For α 6= α′ with f(α) =

f(α′) = 0, we know that there exists σ ∈ Gal(L|F ) such that σ(α) = α′, by

Theorem 5.4. This shows that Gal(L|F ) is transitive on the roots of f(x).

Conversely, suppose Gal(L|F ) corresponds to a transitive subgroup of Sn.

Let h(x) be an irreducible factor of f(x). Let α1, · · · , αn be roots of f(x) and

let h(αi) = 0 for some i. Let j ∈ {1, 2, · · · , n}. By transitivity of Gal(L|F ),

there exists σ such that σ(αi) = αj . Since h(αi) = 0, h(σ(αi)) = 0. Since j is

any integer between 1 and n, h(x) must have at least n roots and this implies

that deg(h(x)) ≥ n and we deduce that f(x) = h(x) and f(x) is therefore

irreducible.

example 7.2 Determine the structure of the group Gal(L|Q) if L is the split-

ting field of xp − 2.
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Solution

The splitting field of xp − 2 is L = Q(ζp, 2
1/p) where ζ = e2πi/p. We have seen

that

[L : Q] ≤ [Q(ζp) : Q][Q(21/p) : Q].

Next, p|[L : Q] and (p−1)|[L : Q]. Since (p, p−1) = 1, we conclude that p(p−1)

divides [L : Q] or [L : Q] ≥ p(p− 1). Therefore, [L : Q] = p(p− 1). By Theorem

7.6,

|Gal(L|Q)| = [L : Q] = p(p− 1).

We now determine the structure of Gal(L|Q). We know that any σ ∈ Gal(L|Q)

is determined by σ(21/p) and σ(ζp). Define

σj,k(21/p) = ζjp21/p, 0 ≤ j ≤ p− 1,

and

σj,k(ζp) = ζkp , 1 ≤ k ≤ p− 1.

There are p(p− 1) choices of σj,k and these are the elements in Gal(L|Q) since

|Gal(L|Q)| = p(p− 1).

We now check that

σj,k ◦ σr,s(21/p) = σj,k(ζrp21/p)

= ζrkp ζjp21/p

= ζrk+jp 21/p,

and

σj,k ◦ σr,s(ζp) = σj,k(ζsp) = ζskp .

Dropping σ in the above, we see that Gal(L|Q) is isomorphic to the group

(G, •)

where G = N ×H with N = Z/pZ and H = (Z/pZ)∗ and

(j, k) • (r, s) = (j + rk, sk).

The group G has identity (0, 1) and the inverse of (j, k) is (−jk′, k′) where k′ is

the inverse of k in H. This group is called the semi-direct product of N by H.

example 7.3 Determine the structure of Gal(Fpn |Fp).

Solution
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Note that L = Fpn is a splitting field of xp
n − x and therefore

|Gal(L|Fp)| = [L : Fp] = n.

We now show that Gal(L|Fp) is cyclic of order n by constructing a generator

for Gal(L|Fp) explicitly. First, note that if Lp = {βp|β ∈ L} then Lp = L. Now,

since β ∈ L,

β = βp
n

= (βp
n−1

)p

which means that L ⊂ Lp. Clearly, Lp ⊂ L then Lp = L. Let σ be the map

σ(β) = βp.

It is a bijection from L to L since it is a surjection. Note that

σ(β + γ) = (β + γ)p = βp + γp = σ(β) + σ(γ).

Also,

σ(βγ) = (βγ)p = βpγp = σ(β)σ(γ).

So σ ∈ Gal(L|Fp). Next, let α be a generator for (Fpn)∗. Then

σj(α) = αp
j

and the smallest j such that σj(α) = α is j = n since the order of α in (Fpn)∗

is pn− 1. Therefore the order of σ in Gal(L|Fp) is n and Gal(L|Fp) is generated

by σ. The map σ is known as the Frobenius automorphism.



8 The Galois extension and Galois
Closure

We have now come to the main theorems of Galois theory.

definition 8.1 Suppose we have a finite extension L over F with Galois

group Gal(L|F ). Given a subgroup H ⊂ Gal(L|F ), we let

LH = {α ∈ L|σ(α) = α for all σ ∈ H.}.

We call LH the fixed field of H.

theorem 8.1 Let F ⊂ L be a finite field extension. The following are equiva-

lent:

(a) L is the splitting field of a separable polynomial in F [x].

(b) F is the fixed field of Gal(L|F ) acting on L.

(c) F ⊂ L is a normal separable extension.

Proof

We first show that (a) implies (b). Let L be the splitting field of a separable

polynomial in F [x]. Let K be a fixed field of Gal(L|F ). This means that if α ∈ K,

the σ(α) = α for all α ∈ Gal(L|F ). By definition of Gal(L|F ), we know that F

is fixed by Gal(L|F ) and so

F ⊂ K. (8.1)

Since L is the splitting field of a separable polynomial f(x) ∈ F [x], L is

the splitting field of f(x) viewed as a polynomial over K. By Theorem 7.6, we

conclude that

[L : K] = |Gal(L|K)| and [L : F ] = |Gal(L|F )|. (8.2)

Now, F ⊂ K ⊂ L implies that [L : K] ≤ [L : F ]. By (8.2), we deduce that

|Gal(L|K)| ≤ |Gal(L|F )|.

Next, let σ ∈ Gal(L|F ). Then since K is the fixed field of Gal(L|F ), σ(α) = α
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and thus, σ ∈ Gal(L|K). This implies that

|Gal(L|F )| ≤ |Gal(L|K)|.

Therefore,

|Gal(L|K)| = |Gal(L|F )|

and by (8.2),

[L : F ] = [L : K]. (8.3)

From (8.1), we know that F ⊂ K. Together with (8.3), we deduce F = K. In

this proof, we have shown that if K = LGal(L|F ), then

Gal(L|K) = Gal(L|F ). (8.4)

Note that we may rewrite (8.4) as

Gal(L|LGal(L|F )) = Gal(L|F ).

We next show that (b) implies (c). Suppose F is the fixed field of Gal(L|F ).

We need to show that L is normal and separable over F .

We first show that L is separable over F . Let α ∈ L. Let σ1(α), · · · , σr(α) be

the distinct images of α under Gal(L|F ). Let

h(x) =

r∏
j=1

(x− σj(α)).

This is a polynomial in L[x].

Let σ ∈ Gal(L|F ). Then

σ(σj(α)) ∈ {σ1(α), · · · , σr(α)} =: S

since σ(σj(α)) must be one of the distinct images of α under Gal(L|F ). Now, if

σ(σj(α)) = σ(σk(α)) then σj(α) = σk(α). Hence, σ permutes the elements in S.

This implies σ fixes the coefficients of h(x). Since elements fixed by Gal(L|F )

lies in F , we conclude that h(x) ∈ F [x]. By definition of h(x), we find that h(x)

is a separable polynomial in F [x] and α is a root of h(x). Hence α is separable

over F and therefore, L is separable over F .

Next, we show that L is a normal over F . Let β be a root of an irreducible

polynomial f(x) ∈ F [x] and β ∈ L. We need to show that f(x) splits completely

in L. By our construction in the previous paragraph, we can find a separable

polynomial g(x) of the form

g(x) =

s∏
j=1

(x− τj(β)),

where τj(β), j = 1, 2, · · · , s are distinct images of β under Gal(L|F ). We have

seen that g(x) ∈ F [x]. Next let t(x) = minF (β). Since t(β) = 0, we conclude

that (x − β)|t(x). Now t(β) = 0 implies that t(τj(β)) = 0 for τj ∈ Gal(L|F ).

Therefore (x− τj(β))|t(x). This implies that g(x)|t(x). Since t(x) is irreducible,
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g(x) = t(x). Since τj(β) ∈ L, we conclude that all the roots of t(x), namely,

τj(β), j = 1, 2, · · · , s, are all in L. This implies that L is a normal extension over

F .

Finally, we show that (c) implies (a). Suppose L is a normal and separable

extension of F . Since L is finite, we may write L = F (α1, · · · , αn) where the

minimal polynomial of αj for each j is separable. By Theorem 6.4, we conclude

that there exists β ∈ L separable over F such that L = F (β). Let b(x) =

minF (β). By normality of L, b(x) splits completely in L = F (β). If K is the

splitting field of b(x) then K must contain β and L ⊂ K. On the other hand, K

is the splitting field of b(x) and by definition of splitting field, it must be contained

in fields for which b(x) splits completely. Therefore K ⊂ L. This implies that

L = K is the splitting field of a separable polynomial b(x) (which in this case is

also irreducible).

definition 8.2 An extension L of F is called a Galois extension of F if it

satisfies one of the three conditions of Theorem 8.1.

theorem 8.2 Suppose L is a Galois extension of F and F ⊂ K ⊂ L. Then L

is a Galois extension of K.

Proof

Note that L is the splitting field of a separable polynomial f(x) over F is L is a

Galois extension of F . But f(x) is also a separable polynomial over K. Hence L

is a splitting field of the same separable polynomial f(x) over K and this implies

that L is a Galois extension of K.

theorem 8.3 Let L be a finite extension of F . Then

(a) |Gal(L|F )||[L : F ],

(b) |Gal(L|F )| ≤ [L : F ],

(c) L is a Galois extension if and only if |Gal(L|F )| = [L : F ].

Proof

We first prove (a). Let K be the fixed field of Gal(L|F ). By (8.4),

Gal(L|K) = Gal(L|F ).

Therefore, K being the fixed field of Gal(L|F ) is the fixed field of Gal(L|K). By

Theorem 8.1, L is a splitting field of a separable polynomial over K and so, by

Theorem 7.6,

|Gal(L|K) = [L : K].
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Now, since F ⊂ K, [L : K] divides [L : F ]. Now, [L : K] = |Gal(L|K)| =

|Gal(L|F )| (by (8.4)), we conclude that |Gal(L|F )| divides [L : F ].

Part (b) follows immediately from (a).

To prove (c), we observe that if L is Galois over F , then Gal(L|F ) = [L : F ]

since L is a splitting field of a separable polynomial over F .

For the converse, let K be the fixed field of Gal(L|F ). We have seen that

[L : K] = |Gal(L|K)| = |Gal(L|F )|. Hence, if

|Gal(L|F )| = [L : F ],

then

[L : K] = [L : F ] = [L : K][K : F ]

implies that [K : F ] = 1, or K = F . Since L is Galois over K, L is Galois over

F .

Remark 8.1 Part (c) of Theorem 8.3 is another equivalent condition for L being

Galois over F .

8.1 Finite separable extensions

The primitive element theorem Theorem 6.4 states that if L is finite extension

of F and L = F (α1, · · · , αn), where αj , 1 ≤ j ≤ n are separable, then there

exists β separable over F such that L = F (β). But we have not shown that L is

separable if L = F (α1, · · · , αn) where αj , 1 ≤ j ≤ n are separable. We will now

show that this is indeed the case.

theorem 8.4 Let L be a finite extension of F . Then L is separable over F if

and only if L = F (α1, · · · , αn), where each αj is separable over F .

Proof

One direction is immediate. If L is a finite separable extension of F , then L

is spanned by, say, α1, · · · , αn, each of which is separable over F . Furthermore,

L = F (α1, · · · , αn).

Conversely, suppose L = F (α1, · · · , αn), where each αj , 1 ≤ j ≤ n, is separable

over F . Then by Theorem 6.4, there exists a separable element β such that

L = F (β). Let f(x) be the minimal polynomial of β over F and let M be the

splitting field of f(x). Then M is Galois over F , hence separable over F . Now,

F (β) = F (α1, · · · , αn) = L ⊂ M since M is the splitting field of f(x). Since M

is separable over F , this means that L is separable over F .



62 The Galois extension and Galois Closure

8.2 Galois closure

The proof of Theorem 8.4 shows that if L is a finite extension of F of the form

L = F (α1, · · · , αn) for which each αj is separable over F , then one can find

a field extension M of L which is Galois over F . This motivates the following

theorem.

theorem 8.5 Let L be a finite separable extension of F . Then there is an

extension M of L such that

(a) M is Galois over F

(b) Given M ′ Galois over F , there is a field homomorphism ϕ : M → M ′ that

is identity on L. (This says that M is the smallest Galois extension over F .)

Proof

By Theorem 6.4, we conclude that L = F (β) for some β ∈ L. Let f(x) be the

minimal polynomial of β over F and M be the splitting field of f(x). Then M

is Galois over F .

To prove (b). Let L ⊂ M ′ where M ′ is Galois over F . Then M ′ is a normal

extension of F . This means that if L = F (β) with minimal polynomial f(x) then

f(x) splits completely in M ′. In other words, if βj , 1 ≤ j ≤ r, are the roots of

f(x) then β1, · · · , βr ∈ M ′. Since the splitting field M = F (β1, · · · , βr) is the

smallest field that contains β1, · · · , βr and F , we conclude that M ⊂M ′.

The field constructed in Theorem 8.5 is called the Galois closure of L over F .



9 Fundamental theorem of Galois
Theory

9.1 Conjugate fields

definition 9.1 Suppose F ⊂ K ⊂ L where [L : F ] < ∞. For σ ∈ Gal(L|F ),

we call σK = {σ(α)|α ∈ K} a conjugate field of K.

lemma 9.1 Let F ⊂ K ⊂ L and σ ∈ Gal(L|F ). Then F ⊂ σL ⊂ L and

[K : F ] = [σK : F ].

Proof

Note that σF = F ⊂ σK. Since σ is an automorphism of L, σK ' K (can be

viewed as isomorphism of vector spaces over F ). Therefore, [σK : F ] = [K :

F ]

9.2 Galois subfields of a Galois extension

theorem 9.2 Suppose F ⊂ K ⊂ L where L is Galois over F . The following

are equivalent:

(a) K = σK for all σ ∈ Gal(L|F ),

(b) K is a normal extension of F ,

(c) K is Galois over F .

Proof

We first prove (a) implies (b). Let β ∈ K ⊂ L. In the proof of Theorem 8.1,

we have seen that if σj(β), 1 ≤ j ≤ r, are the distinct images of β under the

elements in Gal(L|F ), then the polynomial

h(x) =

r∏
j=1

(x− σj(β))
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is equal to minF (β). Since σjK = K, we conclude that all the roots of h(x) are

in K and this implies that K is a normal extension of F .

To show (b) implies (c), we note that K is normal over F . Since L is Galois

over F , L is separable over F . Therefore K is separable over F . This means that

K is finite, normal and separable extension of F and so, by Theorem 8.1, K is

Galois over F .

To show (c) implies (a), we note that K is Galois over F . Let β ∈ K. Then

σ(β), σ ∈ Gal(L|F ), is a root of minF (β). Since K is Galois over F , K is normal

and therefore σ(β) ∈ K. This implies that σ(K) ⊂ K. Now by Lemma 9.1,

[K : F ] = [σ(K) : F ]. Together with σ(K) ⊂ K, we conclude that σ(K) = K for

all σ ∈ Gal(L|F ).

We next given another equivalent statement for the statements given in The-

orem 9.2. We first state a lemma.

lemma 9.3 Suppose F ⊂ K ⊂ L and [L : F ] <∞. Then

(a) Gal(L|K) ≤ Gal(L|F ).

(b) If σ ∈ Gal(L|F ) then Gal(L|σK) = σGal(L|K)σ−1.

Proof

To prove (a), let σ ∈ Gal(L|K). Since σ fixes K, it fixes F . Therefore, σ ∈
Gal(L|F ). Since Gal(L|K) is a group, it is a subgroup of Gal(L|F ).

To prove (b), let γ ∈ Gal(L|σK). Then γ(σ(k)) = σ(k) for all k ∈ K. This

implies that σ−1γσ(k) = k for all k ∈ K and so, σ−1γσ ∈ Gal(L|K), or γ ∈
σGal(L|K)σ−1 and

Gal(L|σK) ⊂ σGal(L|K)σ−1.

The inclusion in the other direction can be established in a similar way.

theorem 9.4 Let L be a Galois extension of F . Then the following are equiv-

alent:

(a) K = σ(K) for all σ ∈ Gal(L|F ),

(b) Gal(L|K) C Gal(L|F ).

Proof

To prove (a) implies (b), we recall that given a subgroup H of a group G, we

say that H C G if gHg−1 = H for all g ∈ G. From Lemma 9.3, we find that if

σ ∈ Gal(L|F ), then

σGal(L|K)σ−1 = Gal(L|σ(K)) = Gal(L|K),

since σ(K) = K. Therefore, Gal(L|K) C Gal(L|F ).
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Next, suppose (b) holds, then for σ ∈ Gal(L|F ),

σGal(L|K)σ−1 = Gal(L|K).

This implies that

Gal(L|σK) = Gal(L|K). (9.1)

But L is Galois over F implies that L is Galois over K and σK. This implies

that

σK = LGal(L|σ(K)) = LGal(L|K) = K,

where the second last equality follows from (9.1). This implies (a) is true.

theorem 9.5 Suppose F ⊂ K ⊂ L where L is Galois over F and K is Galois

over F . Then Gal(L|K) C Gal(L|F ) and

Gal(L|F )/Gal(L|K) ' Gal(K|F ).

Proof

If K is Galois over F , then by Theorem 9.2, Gal(L|K) C Gal(L|F ).

It remains to establish the isomorphism. Let σ ∈ Gal(L|F ). Note that σ
∣∣
K

is

a map from K to σK. But K is Galois over F and therefore by Theorem 9.2,

σK = K. This implies that σ
∣∣
K
∈ Gal(K|F ).

Consider ϕ : Gal(L|F ) → Gal(K|F ) where ϕ(σ) = σ
∣∣
K

. Note that ϕ is a

homomorphism since

(στ)
∣∣
K

(k) = στ(k) = σ
∣∣
K

(τ
∣∣
K

(k)).

We suppose σ
∣∣
K

= 1K . Then σ fixes K and thus, σ ∈ Gal(L|K). This implies

that the kernel of ϕ is Gal(L|K). By first isomorphism theorem for groups, we

deduce that

Gal(L|F )/Gal(L|K) ' Imϕ.

But since L is Galois over F and K,

|Imϕ| = |Gal(L|F )|/|Gal(L|K)| = [L : F ]/[L : K] = [K : F ] = |Gal(K|F )|.

Therefore Imϕ = Gal(K|F ).

9.3 Fundamental theorem of Galois Theory

Let H ≤ Gal(L|F ) where L is a finite extension of F . Define

LH = {α ∈ L|σ(α) = α for all σ ∈ H}.
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theorem 9.6 Let L be a Galois extension of F .

(a) For an intermediate field K with F ⊂ K ⊂ L,

Gal(L|K) ⊂ Gal(L|F )

has fixed field

LGal(L|K) = K.

Furthermore,

|Gal(L|K)| = [L : K] and [Gal(L|F ) : Gal(L|K)] = [K : F ].

(b) For H ≤ Gal(L|F ), its fixed field F ⊂ LH ⊂ L has Galois group

Gal(L|LH) = H.

Furthermore,

[L : LH ] = |H| and [LH : F ] = [Gal(L|F ) : H].

Proof

We first establish (a). Since L is Galois over F , L is Galois over K. Therefore

K = LGal(L|K) by Theorem 8.1. Since both L is Galois overK and F , we conclude

that

|Gal(L|K)| = [L : K] and Gal(L|F ) = [L : F ].

Therefore,

|Gal(L|F ) : Gal(L|K)] = [L : F ]/[L : K] = [K : F ].

To prove (b), let H be a subgroup of Gal(L|F ). This gives F ⊂ LH ⊂ L. For

any σ ∈ H, σ
∣∣
LH

= 1LH . Therefore H ⊂ Gal(L|LH). To prove equality, we use

Theorem 6.4. Observe L is a finite separable extension of LH since L is finite

separable over F . This implies by Theorem 6.4 that L = LH(α) for some α ∈ L.

Let

h(x) =
∏
σ∈H

(x− σ(α)).

Note that h(x) is fixed by H and hence h(x) ∈ LH [x].

Let p(x) be the minimal polynomial of α in LH [x]. Then p(x)|h(x). This implies

that

|H| = deg(h(x)) ≥ deg(p(x)) = [LH [x] : LH ] = [L : LH ].

But |H| ≤ |Gal(L|LH)| = [L : LH ], where the last equality follows from Theorem

7.6 since L is the splitting field of p(x) over LH . Therefore, |H| = |Gal(L|LH)

and we must have H = Gal(L|LH). Now, [L : LH ] = |H|. Hence,

|Gal(L|F )/Gal(L|LH)| = [L : F ]/[L : LH ] = [LH : F ].



9.3 Fundamental theorem of Galois Theory 67

theorem 9.7 Let L be a Galois extension of F . Then the maps between

intermediate fields K where F ⊂ K ⊂ L and subgroups H ⊂ Gal(L|F ) given by

K → Gal(L|K) and H → LH reverse inclusions and are inverse of each other.

Moreover, if a subfield K corresponds to a subgroup H under these maps then

K is Galois over F if and only if H C Gal(L|F ). When this happens,

Gal(L|F )/H ' Gal(K|F ).

Proof

By Theorem 9.6 (a), the composition of the first map followed by the second

map yields

K → LGal(L|K) = K.

Similarly, by Theorem 9.6 (b), the composition of the second map followed by

the first map yields

H → Gal(L|LH) = H.

The map K → Gal(L|K) is inclusion reversing: If K1 ⊂ K2, then an automor-

phism of L fixing K2 must fix K1. In other words, Gal(L|K2) ⊂ Gal(L|K1).

The map H → LH is also inclusion reversing: If H1 ⊂ H2, then α ∈ L which

is fixed by H2 is fixed by H1. This implies LH2
⊂ LH1

.

Finally, let K = LH . If K is Galois over F , then by Theorem 9.2, H =

Gal(L|LH) C Gal(L|F ). Conversely, if H = Gal(L|LH) C Gal(L|F ), then by

Theorem 9.2, we conclude that LH = K is Galois over F .

theorem 9.8 If L is a finite separable extension of F , then there are finitely

many fields K with F ⊂ K ⊂ L.

Proof

Let M be a field extension of L that is Galois over F . Subfields of M containing

F corresponds to subgroups of Gal(M |F ) by Theorem 9.7. Since Gal(M |F ) is a

finite group, it has finitely many subgroups. By the reverse map between subfields

of M and subgroups of Gal(M |F ), we conclude that M contains finitely many

subfields. Therefore, L contains finitely many subfields.

We now give an examples to illustrate Theorem 9.7.
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example 9.1 Let L = Q(ω, 21/3), where ω = e2πi/3. Let G = Gal(L|Q). Let

σ, τ ∈ G be such that

σ(21/3) = ω21/3, σ(ω) = ω, τ(21/3) = 21/3 and τ(ω) = ω2.

These two elements generate G and by verifying τστ−1 = σ−1, τ2 = σ3 = 1G,

we deduce that G ' S3. The subgroups of G are < 1G >, < σ >,< τ >,< στ >

and < σ2τ >. We now illustrate with an example on the determination of LH
when H is a subgroup of G. Note that σ fixes ω and therefore L<σ> contains

Q(ω). But [Q(ω) : Q] = 2 = (G :< σ >) = [L<σ> : Q]. Therefore L<σ> = Q(ω).

In a similar way, we can construct LH for other subgroups H of G. But such

constructions are often tedious even for very small groups.

9.4 Compositum of fields

definition 9.2 Let L be a field extension of F . We say that K is an inter-

mediate field of L|F if K is a field such that F ⊂ K ⊂ L.

definition 9.3 Let L be a field extension of F . Let E1 and E2 be interme-

diate fields of L|F . The compositum of E1 and E2, denoted by E1E2, is the

intermediate field of L|K containing E1 and E2.

We will also view E1 ∩ E2 as the largest field that is contained in E1 and E2.

definition 9.4 Let G be a group and let H and K be subgroups of G. We

define H ∨K as the smallest subgroup G containing H and K.

Remark 9.1 It is known that if HK = KH then HK is a group and H ∨K =

HK. Note also that HVK is not always HK if HK is not a group. For example,

HK is not a group when H =< (1 2) > and K =< (2 3) > while H ∨K = S3.

We also view H ∩K as the largest group that is contained in H and K.
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theorem 9.9 (a) Let L be Galois over F and E1, E2 be intermediate fields

of L|F . Then

Gal(L|E1E2) ' Gal(L|E1) ∩Gal(L|E2)

and

Gal(L|E1 ∩ E2) ' Gal(L|E1) ∨Gal(L|E2).

(b) Let L be Galois over F and G = Gal(L|F ). Let H and K be subgroups of

G. Then

LH∨K = LH ∩ LK

and

LH∩K = LHLK .

Proof

We will prove (a) and leave (b) as exercise. Now E1E2 is the smallest field contain-

ing E1 and E2. By the Galois correspondence, E1E2 corresponds to Gal(L|E1E2)

and is the largest group contained in Gal(L|E1) and Gal(L|E2), a consequence

of the order reversing property.

But the largest group contained in Gal(L|E1) and Gal(L|E2) is Gal(L|E1) ∩
Gal(L|E2).

Similarly, E1∩E2, which is the largest field contained in E1 and E2, must corre-

spond to a group that is the smallest group containing Gal(L|E1) and Gal(L|E2).

This implies that

Gal(L|E1 ∩ E2) = Gal(L|E1) ∨Gal(L|E2).

theorem 9.10 Let f(x) ∈ F [x] be a separable polynomial and let L be the

splitting field of f(x). Let f(x) = g(x)h(x) in F [x]. Let E1 and E2 be intermedi-

ate fields of L|F which are splitting fields of g(x) and h(x) respectively. Suppose

E1 ∩ E2 = F , then

Gal(L|F ) ' Gal(E1|F )×Gal(E2|F )

Proof

Recall that if H,K are normal subgroups of a group G, then G = H × K (a

direct product of H and K) if H ∩K = {1} and H ∨K = G.

Now E1 and E2, being splitting fields of g(x) and h(x) respectively, are Ga-

lois over F . Hence, Gal(L|E1) and Gal(L|E2) are both normal subgroups of

Gal(L|F ). Now E1E2 is a field where f(x) splits and hence L ⊂ E1E2. On the
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other hand, E1E2 ⊂ L and hence L = E1E2. Now,

Gal(L|E1) ∩Gal(L|E2) = Gal(L|E1E2) = Gal(L|L) = {1}

and

Gal(L|E1 ∩ E2) = Gal(L|F ) = Gal(L|E1) ∨Gal(L|E2)

= Gal(L|E1)Gal(L|E2) = Gal(L|E1)×Gal(L|E2).

Finally,

Gal(L|E1) ' Gal(L|F )/Gal(L|E2) ' Gal(E2|F )

and

Gal(L|E2) ' Gal(L|F )/Gal(L|E1) ' Gal(E1|F )

and this completes the proof of the theorem.

theorem 9.11 Let L be Galois over F and E be a finite extension of F . Then

LE is Galois over E and

Gal(EL|E) ' Gal(L|L ∩ E).

Proof

Since L is Galois over F , L is a splitting field of some separable polynomial

f(x) over F . Let L = F (α1, · · · , αn) where α1, · · · , αn are roots of f(x). Then

EL = E(α1, · · · , αn) is the splitting field of f(x) viewed as a polynomial over

E[x]. Therefore EL is Galois over E.

Let M be a Galois closure of EL over F . Then

Gal(EL|E) ' Gal(M |E)/Gal(M |EL)

' Gal(M |E)/(Gal(M |E) ∩Gal(M |L))

' Gal(M |L)Gal(M |E)/Gal(M |L)

' Gal(M |L ∩ E)/Gal(M |L) ' Gal(L|L ∩ E),

where the third last isomorphism is established using second isomorphism theo-

rem for groups. This completes the proof of the theorem.

9.5 Cyclotomic fields

definition 9.5 Let n ≥ 3 be a positive integer and let ζn = e2πi/n. The field

Q(ζn) is called the cyclotomic field of n-th root of unity.
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In this section, we will show that

[Q(ζn) : Q] = ϕ(n), (9.2)

where ϕ(n) is the number of integers between 1 and n that are relatively prime

to n. The function ϕ(n) is called the Euler ϕ function. We will prove (9.2) by

showing that the polynomial

Φn(x) =

n∏
`=1

(n,`)=1

(x− ζ`n)

is irreducible. If this is true, then

[Q(ζn) : Q] = deg(minQ(ζn)) = ϕ(n).

We first observe that Φn(x) ∈ Z[x]. Note that

xn − 1 =
∏
d|n

n∏
j=1

(j,n)=n/d

(x− e2πij/n) =
∏
d|n

Φd(x).

We will show that Φn(x) ∈ Z[x] by induction. Note that Φ1(x) = x − 1 and

Φ2(x) = x + 1 and so Φk(x) ∈ Z[x] for k = 1 and 2. Suppose Φk(x) ∈ Z[x] for

k < n. Let Φn(x) = a0 + a1x+ · · ·+ asx
s and∏

d|n
d6=n

Φd(x) = b0 + b1x+ · · · btxt.

Then

xn − 1 = (a0 + a1x+ · · ·+ asx
s)(b0 + b1x+ · · ·+ btx

t).

Note that a0b0 = −1. Now, for n > 1, a0 = e2πiN/n where

N =

n∑
j=1

(j,n)=1

j =
nϕ(n)

2
.

This implies that a0 ∈ Z. Hence b0 = ±1. Considering the coefficient of x,

a0b1 + a1b0 ∈ Z.

Since b0 = ±1, we conclude that a1 ∈ Z. By comparing the coefficients of xk, for

0 ≤ k ≤, we conclude that aj ∈ Z, 0 ≤ j ≤ s and therefore, Φn(x) ∈ Z[x]. We

next show that Φn(x) is irreducible over Q. We will follow the idea of Gauss.

The following lemma is the first step to the proof of the irreducibility of Φn(x).

lemma 9.12 Let f(x) ∈ Z[x] be monic polynomial of degree greater than 1.

Let p be a prime and fp(x) be a monic polynomial with the property that the

roots of fp(x) are the p-th power of the roots of f(x). Then



72 Fundamental theorem of Galois Theory

(a) fp(x) ∈ Z[x],

(b) fp(x) ≡ f(x) (mod p).

Proof

If f(x) has roots γ1, · · · , γr, r = deg(f(x)), then

fp(x) =

r∏
i=1

(x− γpi ) = xr − σr,1(γp1 , · · · , γpr )xr−1 + · · ·+ (−1)rσr,r(γ
p
1 , · · · , γpr ).

Note that the coefficients of fp(x) are symmetric in γ1, · · · , γr and so, they can

be expressed in terms of σr,j(γ1, · · · , γr) with coefficients in Z. Since f(x) ∈ Z[x],

this implies that fp(x) ∈ Z[x]. This completes the proof of (a).

To prove (b), observe that in Fp,

σr,j(γ
p
1 , · · · , γpr ) ≡ σr,j(γ1, · · · , γr)p ≡ σr,j(γ1, · · · , γr) (mod p),

where the last congruence follows from Fermat’s little theorem. Hence, fp(x) =

f(x) in Fp[x].

We now prove the main result of this section.

theorem 9.13 For n ≥ 3, Φn(x) is irreducible over Q.

Proof

By Gauss Lemma, it suffices to prove that Φn(x) is irreducible over Z. Suppose

that Φn(x) is reducible. We may express Φn(x) as a product of monic irreducible

polynomials over Z. Let ω be a root of Φn(x). Then there is an irreducible

polynomial f(x) over Z which divides Φn(x) such that f(ω) = 0. Next suppose

p - n. We claim that f(ωp) = 0.

Suppose not. Then f(ωp) 6= 0. By definition of fp(x) in Lemma 9.12, we con-

clude that fp(ω
p) = 0 since its zeroes are the p-th power of the zero of f(x). Note

that f(x) and fp(x) has no root in common, for otherwise, (f(x), fp(x)) 6= 1 and

f(x) would divide fp(x) since f(x) is irreducible over Z. This would imply that

f(x) = fp(x) as the degrees of these two polynomials are the same. Therefore,

for some polynomial h(x), the factorization of Φn(x) in Fp[x] is given by

Φn(x) = f(x)fp(x)h(x) = f2(x)h(x),

by Lemma 9.12 (b). But this is impossible since Φn(x), being a divisor of the

separable polynomial xn − 1 over Fp, is separable. We must therefore conclude

that f(ωp) = 0.

Now, given (`, n) = 1, write ` = q1 · · · qs where qi are primes with (qi, n) = 1.

Suppose g(x) = minQ(ζn) and that it is a proper divisor of Φn(x). Then by the

above, we observe that g(ζq1n ) = 0. Next, since q2 - n, we may apply the result

we proved in the previous paragraph with ω = ζq2n to deduce that g(ζq1q2n ) = 0.
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By repeating this argument s − 1 times, we conclude that g(ζ`n) = 0. Now, the

degree of g(x) must be at least ϕ(n) and so, it cannot be a proper divisor of

Φn(x). Hence, Φn(x) = g(x) and is therefore irreducible in Z[x].

corollary 9.14 The degree [Q(ζn) : Q] = ϕ(n).

9.6 Möbius function and the number of irreducible polynomials
over Fp

definition 9.6 The Möbius function µ(n) defined by µ(1) = 1 and for n > 1

with

n =

m∏
k=1

pαkk ,

µ(n) =

{
(−1)m if αi = 1, 1 ≤ i ≤ m
0 otherwise.

.

The Möbius function, like ϕ(n), satisfies

µ(mn) = µ(m)µ(n)

when (m,n) = 1. A function defined on positive integers which satisfies such

relation is called a multiplicative function.

definition 9.7 The function u(n) is defined by u(n) = 1 for all positive

integers n.

theorem 9.15 (The Möbius inversion formula) Let f and g be functions

defined on the set of positive integers with values in C. Then

f(n) =
∑
d|n

g(d),

if and only if

g(n) =
∑
d|n

µ(n/d)f(d).
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For a proof of the above theorem, see “Introduction to Analytic Number The-

ory” by T.M. Apostol or “Analytic Number Theory for Undergraduates” by H.H.

Chan.

We observe that

xn − 1 =
∏
d|n

Φd(x).

This implies that

ln(xn − 1) =
∑
d|n

ln Φd(x),

which by Theorem 9.15, leads to

ln Φn(x) =
∑
d|n

µ(n/d) ln(xd − 1).

Therefore,

Φn(x) =
∏
d|n

(
xd − 1

)µ(n/d)
. (9.3)

From (9.3), we observe that since the left hand side is a polynomial in x, the

right hand side, which appears to be a rational function in x must also be a

polynomial. If we expand the right hand side in power series about the origin,

we know that the coefficients of the power series would have to be integers since

1

xk − 1
= −(1 + xk + x2k + · · · ).

This implies that Φn(x) ∈ Z[x]. Alternatively, we may write the right hand side

as P (x)/Q(x) with P (x), Q(x) ∈ Z[x] and deduce that

Q(x)Φn(x) = P (x).

Observing that the coefficient of the constant term of Q(x) is ±1, we may deduce

as in the previous section that the coefficients of xj , 0 ≤ j ≤ ϕ(n), are all integers,

implying that Φn(x) ∈ Z[x].

example 9.2 When n = 6, we find that

Φ6(x) =
(x6 − 1)(x− 1)

(x3 − 1)(x2 − 1)
= x2 − x+ 1.

There is another reason why we introduce µ(n). We know that if p is a prime

then the number of irreducible polynomials of a given degree n over Fp is finite.

Theorem 9.15 allows us to give the number of irreducible polynomials of degree

n over Fp explicitly if we know the factorization of n into primes.
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We observe that if f(x) is an irreducible polynomial of degree n ≥ 1 and γ is

one of its roots, then

Fp(γ) ' Fpn .

Since every element β in Fpn satisfies

βp
n

= β,

we conclude that f(x) must divide xp
n − x. This property holds for every irre-

ducible polynomial of degree n over Fp. We also observe that the roots of any

irreducible polynomial g(x) of degree d with d|n must also lie in a field isomorphic

to Fpd . This implies that g(x) must also divide xp
n − x. Therefore,

∏
d|n

md∏
jd=1

fjd(x) divides xp
n

− x,

where fjd(x) is an irreducible polynomial of degree d. In other words, the roots

(which are distinct) of ∏
d|n

md∏
jd=1

fjd(x)

are the roots of xp
n − x.

Next, if α ∈ Fpn , then it is a root of some irreducible polynomial of degree

d ≥ 1 over Fp. This implies that all the roots of xp
n − x are roots of

∏
d|n

md∏
jd=1

fjd(x).

Therefore,

xp
n

− x =
∏
d|n

md∏
jd=1

fjd(x) =
∏
d|n

md∏
jd=1

fjd(x).

By counting the degrees of the polynomials on both sides, we conclude that

pn =
∑
d|n

dmd.

By Theorem 9.15, we conclude that for n ≥ 2,

mn =
1

n

∑
d|n

µ(n/d)pd.

example 9.3 When n = 4, p = 2, we find that

m4 =
1

4
(−22 + 24) = 3.
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The polynomials of degree 4 which are irreducible over F2 are

x4 + x+ 1, x4 + x3 + 1, and x4 + x3 + x2 + x+ 1.

9.7 Discriminant revisited

Let F be a field, with char F 6= 2. Let f(x) ∈ F [x] be a separable polynomial

with deg f(x) ≥ 2 and zeroes α1, · · · , αn. L be a splitting field of f(x). Recall

that √
∆(f) =

∏
i<j

(αi − αj) ∈ L.

We have seen that there exists a one to one homomorphism

ψ : Gal(L|F )→ Sn.

Let τσ denote the image of σ in Sn under ψ. We have the following theorem:

theorem 9.16 Let F , f(x) and L be defined as in the above paragraph. Then

(a) σ(
√

∆(f)) = sgn(τσ)
√

∆(f),

(b) The image of Gal(L|F ) under ψ lies in An, the set of even permutations in

Sn, if and only if
√

∆(f) ∈ F.

Proof

Recall that
√

∆ =
∏
i<j

(xi − xj)

has the property that τ ·
√

∆ = sgn(τ)
√

∆ for all τ ∈ Sn. This yields∏
i<j

(xτ(i) − xτ(j)) = sgn(τ)
∏
i<j

(xi − xj).

Applying the evaluation map, we deduce that∏
i<j

(ατ(i) − ατ(j)) = sgn(τ)
∏
i<j

(αi − αj).

Let τ = τσ. Then σ(αi) = ατσ(i) and this implies that∏
i<j

(ατσ(i) − ατσ(j)) = σ(
√

∆(f)).

This completes the proof of (a).
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For (b), let L be Galois over F . Therefore, F = LGal(L|F ). Now,√
∆(f) ∈ LGal(L|F )

if and only if

σ(
√

∆(f)) =
√

∆(f)

for σ ∈ Gal(L|F ). This is equivalent to

sgn(τσ)(
√

∆(f)) =
√

∆(f).

The last identity is equivalent to τσ ∈ An.

theorem 9.17 Let f(x) ∈ F [x] e a monic irreducible separable cubic polyno-

mial where charF 6= 2. If L is the splitting field of f(x) over F , then

Gal(L|F ) =

{
Z/3Z if ∆(f) is a square in F ,

S3 otherwise.
.

Proof

The group G = Gal(L|F ) acts transitively on roots of f(x). This implies that

3||Gal(L|F )|. The group G is isomorphic to a subgroup of S3 and there are two

subgroups in S3 with order divisible by 3. They are S3 and A3 ' Z/3Z. We have

seen that Gal(L|F ) is isomorphic to a subgroup of A3 if and only if ∆(f) is a

square. This completes the proof of the theorem.

9.8 The return of irreducible quartic polynomials

We have seen that if L is the splitting field of an irreducible cubic polynomial,

then

Gal(L|Q) ' S3

if and only if ∆(f(x)) is not a square in Q. The analogue of this result for the

irreducible quartic polynomials over Q is more complicated.

We first recall that if

f(x) = x4 + qx2 + rx+ s

is irreducible with roots αj , j = 1, 2, 3, 4, then

u = (α1 + α2)(α3 + α4)

v = (α1 + α3)(α2 + α4)

w = (α1 + α4)(α2 + α3)
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satisfies a cubic polynomial equation of the form

g(x) = x3 − 2qx2 + (q2 − 4s)x+ r2 = 0.

The polynomial g(x) is called the resolvent cubic of f(x).

theorem 9.18 Let f(x) = x4 + qx2 + rx+ s be irreducible over Q and L be

the splitting field of f(x) over Q and G = Gal(L|Q). Let M = Q(u, v, w) be the

splitting field of g(x) = x3−2qx2 + (q2−4s)x+ r2 over Q and m = |Gal(M |Q)|.

(i) If m = 6, then G ' S4.

(ii) If m = 3, then G ' A4.

(iii) If m = 1, then G ' V , where

V = {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1)(2)(3)(4)}.

(iv) If m = 2, then G ' D8 or Z/4Z.

Proof

If σ ∈ G ∩ V then u, v, w is fixed by σ. Conversely, checking the 24 elements of

S4, we find that σ ∈ S4 fixes (αi + αj)(αk + α`) if and only if

σ ∈ V ∪ {(i j), (k `), (i k j `), (i ` j k)}.

This implies that if σ ∈ G fixes u, v, w then σ ∈ G ∩ V since

{(1 2), (3 4), (1 3 2 4), (1 4 2 3)} ∩ {(1 3), (2 4), (1 2 3 4), (1 4 2 3)} = φ.

Therefore, σ fixes u, v, w if and only if σ ∈ V ∩ G. Hence, Gal(L|Q(u, v, w)) =

G ∩ V. This implies that Gal(M |Q) ' G/(G ∩ V ). Since Gal(M |Q) ⊂ S3, we

conclude that m = |G|/|G ∩ V | = |Gal(M |Q)| must divide 6.

Next G is transitive on the roots of f(x) and so it is divisible by 4. Hence

|G| = 4, 8, 12, 24. If m = 6, then |G| = 6|G ∩ V | = 12 or 24. If |G| = 12 then

G ' A4 but this means that |G∩V | = 4 and |G| = 6|G∩V | = 24, a contradiction.

Therefore, G ' S4.

If m = 3, then |G| = 3|G ∩ V | = 12, 24. If |G| = 24, then |G ∩ V | = 8 which is

impossible since |V | = 4. Hence, G ' A4.

If m = 1, then |G| = |G ∩ V | = 4`. But |V | = 4 implies that G ' V.
Finally, if m = 2, then |G| = 2|G ∩ V | ≤ 8 since |V | = 4. This implies that

|G| = 4 or 8. If |G| = 8, then |G ∩ V | = 4 and G ' D8, the Sylow 2-subgroup of

S4.

If |G| = 4, then G is a Klein 4 group or cyclic of order 4. But if G is a Klein 4

group, it cannot be V since this would imply that G ∩ V = V and violates the

equation |G| = 2|G ∩ V |. Therefore G has to be cyclic of order 4.
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10.1 Solvable groups

definition 10.1 A finite group G is solvable if there are subgroups

{e} = Gn ⊂ Gn−1 ⊂ · · · ⊂ G1 ⊂ G0 = G

such that for i = 1, 2, · · · , n, we have

(a) Gi CGi−1
(b) [Gi−1 : Gi] is a prime number.

Note that (b) can be replaced by Gi−1/Gi is a cyclic group with prime order.

theorem 10.1 Every subgroup of a solvable group is solvable.

Proof

Let G be a solvable group and let H be a subgroup of G. Let

Hi = Gi ∩H, i = 1, · · · , n.

Consider π : Hi−1 → Gi−1/Gi that sends h ∈ Hi−1 to hGi ∈ Gi−1/Gi.

Observe that h ∈ Hi is in the kernel of π if and only if h ∈ Gi−1. This implies

that ker(π) = Hi−1. Therefore, Hi−1/Hi is isomorphic to a subgroup of Gi−1/Gi.

Since Gi−1/Gi is cyclic of prime order p, we conclude that Hi = Hi−1 or Hi−1/Hi

is cyclic of prime order p. Discarding the duplicates,, we obtain a chain

{e} = Hm ⊂ Hm−1 ⊂ · · · ⊂ H1 ⊂ H0 = H,

where [Hj−1 : Hj ] is prime. This implies that H is a solvable.

We now discuss the main tool for dealing with solvable groups.

theorem 10.2 Let G be a finite group and H be a normal subgroup of G.

Then G is solvable if and only if G/H and H are solvable.
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Proof

The previous theorem shows that if G is solvable then H is solvable. We now

show that G/H is solvable. Suppose Gi are subgroups of G with Gi CGi−1 and

[Gi−1 : Gi] is prime. Next, since GiCGi−1, we conclude that HGiCHGi−1 since

for hg ∈ HGi−1,

hg(HGi) = h(gH)Gi = h(Hg)Gi = H(gGi) = H(Gig) = (GiH)g = GiHhg = HGihg.

Furthermore,

HGi−1/HGi ' HGiGi−1/HGi ' Gi−1/(Gi−1 ∩HGi)
' (Gi−1/Gi)/((Gi−1 ∩HGi)/Gi).

But Gi−1/Gi is cyclic of prime order and so, HGi−1/HGi is either trivial or

cyclic of prime order. If it is trivial, we discard HGi. In this way, we ob-

tain jk ∈ {1, · · · , n} such that HGjk/H C HGjk−1/H with the property that

(HGjk/H)/(HGjk−1/H) is a group of prime order. This implies that G/H is

solvable.

Conversely, if H is solvable and G/H is solvable, then the fact that G is

solvable follows from the observation that the groups Aj/H C Aj−1/H, where

the Aj ’s contain H, give rise to Aj CAj−1 with [Aj−1 : Aj ] = p for some prime

p. This yields a collection of subgroups satisfying

H = Am CAm−1 C · · ·CG.

The solvability of H implies that there are groups such that

B` = {1G}CB`−1 C · · ·CB0 = H,

with each Bj−1/Bj cyclic of prime order, we conclude, together with the chain

of groups from H to G that G is solvable.

corollary 10.3 Every finite abelian group is solvable.

Proof

We use induction on |G| = m. If |G| = 1 or 2, G is solvable. Suppose m ≥ 2 and

any abelian group of order less than n is solvable. Let G be a group of order n.

If n is prime, then we are done. Suppose n is composite. Let p be a prime that

divides n. By Cauchy’s theorem, there exists a subgroup H of order p. Now, H

is solvable and G/H is solvable, by induction. This implies that G is solvable by

Theorem 10.2.

theorem 10.4 Let G be a group of order pα, p prime. Then G is solvable.
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Proof

Let G acts on G via

g · x = gxg−1.

Then Ox = {gxg−1|g ∈ G}. Then |Ox| divides |G|. Therefore, |Ox| = 1 or

divisible by p. If |Ox| = 1, then gxg−1 = x for all g ∈ G. This implies that

gx = xg and hence, x lies in Z(G), the center of G. From the identity

|G| =
∑

x∈Z(G)

|Ox|+
∑

x 6∈Z(G)

|Ox|,

we observe that |Z(G)| > 1.

We now prove by induction that every group of order pα is solvable. When

α = 1, G is cyclic and therefore solvable. Suppose the statement is true for

α ≤ n − 1. Let G be a group of order pn. Note that Z(G) C G. Furthermore,

Z(G) is abelian and hence, solvable. Now, G/Z(G) has order less than pn since

|Z(G)| > 1. Therefore, by induction hypothesis, G/Z(G) is solvable. By Theorem

10.2, we conclude that G is solvable.

10.2 Simple groups

definition 10.2 A group G is simple if its only normal subgroups are {e}
and G.

All cyclic groups Z/pZ are simple. Here are more interesting simple groups.

theorem 10.5 The alternating group An is simple for n ≥ 5

Proof

An `-cycle lies in An if and only if ` is odd. If n ≥ 3, An is generated by 3-cycle.

Suppose H 6= {e}, H C An. We want to show that H = An. First, we will show

that H contains a 3-cycle. Let σ ∈ H. Let (j1 j2 j3) be a 3-cycle in An and σ ∈ H.

Since H CAn, we conclude that

σ−1(j1 j2 j3)−1σ(j1 j2 j3) ∈ H.

Suppose one of the cycles in σ has length at least 4, i.e., σ = (i1 i2 i3 i4 · · · ) · · · .
Then

σ−1(i2 i3 i4)−1σ(i2 i3 i4) = (i2)(i3 i4 i1) ∈ H.

Suppose σ has a 3-cycle. If σ is a 3-cycle, then we are done. Otherwise, we

may assume that σ = (i1 i2 i3)(i4 i5 · · · ) · · · . Now,

σ−1(i2 i3 i5)−1σ(i2 i3 i5) = (i1 i4 i2 i3 i5)
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and so, H contains a 5-cycle and we apply our previous case to obtain a 3-cycle

in H.

Finally, suppose σ is a product of 2-cycles. Let σ = (i1 i2)(i3 i4) · · · Then

σ−1(i2 i3 i4)−1σ(i2 i3 i4) = (i2 i4)(i3 i1) ∈ H.

Let i5 be different from i1, i2, i3 and i4. Now,

((i1 i3)(i2 i4))−1(i1 i3 i5)−1(i1 i3)(i2 i4)(i1 i3 i5) = (i1 i5 i3) ∈ H.

We next claim that H contains all 3-cycles. If i, j, k, i′, j′, k′ are different, then

we observe that

(k k′)(i j′)(k i′)(i j)(i j k)((k k′)(i j′)(j i′)(i j))−1 = (k′ i′ j′).

If i, j, k is to be mapped to i, j′, k′, we use

(j j′)(k k′)(i j k)(k k′)(j j′) = (j′ k′ i).

Finally, if i, j, k is to be mapped to i, j, k′, we use

(i j)(k k′)(i j k)(k k′)(i j) = (i k′ j).

Hence, H = An.

We have shown that An is simple for n ≥ 5.

Remark 10.1 We will leave it as an exercise to show that if n ≥ 5, then the

only normal subgroups of Sn are {1Sn} and An.
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11.1 Radical and Solvable extensions

definition 11.1 A field extension L of F is radical if there are fields

F = F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = L

such that for i = 1, 2, · · · , n, there is a γi ∈ Gi such that

Fi = Fi−1(γi),

where γmii ∈ Fi−1 for some positive integers mi.

Notice that if bi = γmii ∈ Fi−1, then γi is a mi-th root of bi. We write

Fi = Fi−1( mi
√
bi), bi ∈ Fi−1.

Note that mi
√
bi is used to denote the solution of xmi = bi that lies in Fi.

Remark 11.1 Note that although γi is a root of xmi−γmii , the degree [Fj−1(γi) :

Fj−1] may not be mi. For example, when F = Q and γ = e2πi/3, Q(e2πi/3) is a

radical extension of Q with (e2πi/3)3 = 1 but the degree of the extension is 2.

Remark 11.2 We can replace mi by primes in the chain of fields. For example

if p|m in the radical extension F ⊂ F (γ) with γm ∈ F , we can refine the chain

as

F ⊂ F (γm/p) ⊂ F (γ).

We may insert intermediate fields until we get a chain of radical extensions with

the property that Fi = Fi−1(β) with βpi ∈ Fi−1 where pi is a prime. Once again,

this does not mean that [Fi : Fi−1] = pi.

The following examples show the existence of extensions which are not radical.
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example 11.1 Let L be a splitting field of

f(x) = x3 + x2 − 2x− 1 ∈ Q[x].

The discriminant ∆f(x) = 72 > 0. One can show that the roots of f(x) are all

real and that

Gal(L|Q) ' Z/3Z.

If Q ⊂ L were radical, then [L : Q] = 3 implies that L = Q(γ), with γm ∈ Q,

for some positive integer m.

The minimal polynomial g(x) of γ would divide xm − γm and of degree 3. (In

other words m ≥ 3.) Since L is Galois over Q, g(x) splits over Q(γ), so that if

ζm = e2πi/m, then three of γ, ζmγ, · · · , ζm−1m γ would be in L. This is impossible

since L ⊂ R. Hence L is not radical over Q.

definition 11.2 A field extension L of F is solvable if there is a field extension

M of L such that M is radical over F .

The above example motivates the following definition:

definition 11.3 A field extension L of F is solvable if there is a field extension

M of L such that M is radical over F .

11.2 Compositums and Galois closures

definition 11.4 Suppose K1 and K2 are subfields of a field L. Then the

compositum of K1 and K2 in L is the smallest subfield of L containing K1 and

K2. We denote the compositum of K1 and K2 by K1K2.

We have seen in Section 8.2 that every finite separable extension L of F has a

Galois closure, which may be thought of as the smallest Galois extension of F

containing L. The Galois closure of L can expressed in terms of compositums as

follow:

theorem 11.1 Suppose F ⊂ L ⊂ M where M is Galois over F . Then the

compositum of all conjugate fields of L in M is the Galois closure of L over F .
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Proof

Theorem of primitive element implies that L = F (α) for some α ∈ L. Since

M is Galois over F , the minimal polynomial h(x) of α over F is separable and

splits in M . Let h(x) = (x − α1) · · · (x − αr) where α1 = α. It follows that

K = L(α1, · · · , αr) is a Galois extension of F containing L. We claim that K is

the smallest Galois extension of F containing L. Suppose K ′ is Galois over F and

contains L. Then K ′ contains K. If σ ∈ Gal(M |F ) then σ(L) = F (σ(α)) ∈ K.
Therefore, the compositum K∗ of σ(L) for all σ ∈ Gal(M |F ) is a Galois extension

contained in K. Since K∗ contains F and α1, · · · , αr, by minimality of K, we

conclude that K ⊂ K∗. Therefore K is the compositum K∗ and every Galois

extension K ′ contains K∗. In other words, K∗ is the Galois closure of L.

11.3 Properties of Radical and Solvable extension

lemma 11.2 Let F be a subfield of L.

(a) If L is radical over F and M is radical over L, then M is radical over F .

(b) If K1 and K2 are subfields of L and contain F such that K1 is radical over

F , then K1K2 is radical over K2.

(c) If K1 and K2 are subfields of L and contain F such that K1 and K2 are

radical over F , then K1K2 is radical over F .

Proof

To prove (a), we splice the two chains of extensions arising from the assumptions

that M is radical over L and L is radical over F .

To prove (b), let

F = F0 ⊂ F1 · · · ⊂ Fn−1 ⊂ Fn = K1,

with Fi = Fi−1(γi) such that γi ∈ Fi and γmii ∈ Fi−1, 1 ≤ i ≤ n. Let E0 = K2

and Ej = Ej−1(γj), 1 ≤ j ≤ n. Note that Fj ⊂ Ej since F0 ⊂ K2. Hence,

En is radical over K2. Now, K1 = Fn ⊂ En and K2 ⊂ En. This implies that

K1K2 ⊂ En. On the other hand, En ⊂ K2Fn = K2K1 as it can be shown by

induction that Ej ⊂ K2Fj ( Ej = Ej−1(γj) ⊂ K2Fj−1(γj) = K2Fj).

For (c), we observe that by (b) that K1K2 is radical over K2. Now K2 is

radical over F . Therefore, by (a), K1K2 is radical over F .

theorem 11.3 If L is separable and radical over F , then its Galois closure is

also radical.

Proof
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Let M be an extension of L such that M is Galois over F . Given σ ∈ Gal(M |F ),

F ⊂ σ(L) ⊂ M . Since L is radical over F , σ(L) is radical over F . By Lemma

11.2, we conclude that Lσ(L) is radical over F . This implies that the Galois

closure of L, which is the compositum of the conjugate fields of L, is radical over

F .

corollary 11.4 Let F be a field of characteristic 0. If L is a finite solvable

extension of F , then the Galois closure of L over F is also solvable.

Proof

Since L is solvable, there exist an extension M of L which is radical over F .

Since the characteristic of F is 0, M is separable. The Galois closure N of M is

radical, by Theorem 11.3. Now, N contains L and Galois over F . This implies

that N contains the Galois closure of L and hence, the Galois closure of L is

solvable.
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All fields in this chapter will have characteristic 0.

12.1 Solvable extensions and solvable groups

lemma 12.1 Let L be a Galois extension of F . Let ζ be a primitive m-th root

of unity. Then L(ζ) is Galois over F and F (ζ) and the following are equivalent:

(a) Gal(L|F ) is solvable.

(b) Gal(L(ζ)|F ) is solvable.

(c) Gal(L(ζ)|F (ζ)) is solvable.

Proof

By Theorem 6.4, L = F (α) for some α ∈ L. The field L(ζ) is the splitting field

of the product of xm − 1 ∈ F [x] and h(x) ∈ F [x] where h(x) is the minimal

polynomial of α. This implies that L(ζ) is Galois over F . Since L(ζ) is Galois

over F , it is Galois over F (ζ).

We now prove the equivalence of (a) and (b). The key is to show that Gal(L(ζ)|L)

is abelian. Given any σ ∈ Gal(L(ζ)|L), its image on L(ζ) is determined by its

action on ζ. Now, if σ, τ ∈ Gal(L(ζ)|L) and σ(ζ) = ζν and τ(ζ) = ζµ, then

στ(ζ) = σ(ζµ) = ζνµ = ζµν = τσ(ζ).

Therefore, σ ∈ Gal(L(ζ)|L) is abelian and hence solvable.

Now Gal(L|F ) is solvable and Gal(L(ζ)|L) is solvable. This implies that Gal(L(ζ)|F )

is solvable. The converse follows from the fact that if G is solvable and H is a

normal subgroup, then H and G/H are solvable.

Suppose Gal(L(ζ)|F ) is solvable. Then since Gal(L(ζ)|F (ζ)) is a subgroup of

Gal(L(ζ)|F ), it is solvable. Conversely, suppose Gal(L(ζ)|F (ζ)) is solvable. To-

gether with the fact that Gal(F (ζ)|F ) is solvable, we conclude that Gal(L(ζ)|F )

is solvable.

The next lemma is crucial.
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lemma 12.2 Suppose M is Galois over K with Gal(M |K) cyclic of prime order

p. If K contains a primitive p-th root of unity ζ, then there is α ∈M such that

M = K(α) with αp ∈ K.

Proof

We let σ be the generator of the cyclic group G = Gal(M |K). Let β ∈M with

β 6∈ K. Let

αi =

p−1∑
j=0

ζ−jiσj(β).

Then

σ(αi) =

p−1∑
j=0

ζ−ijσj+1(β)

=

p∑
`=1

ζ−i`+iσ`(β) = ζiαi.

This implies that

σ(αi) = ζiαi. (12.1)

When i = 0, then σ(α0) = α0 implies that

α ∈ K,

since σ generates G which implies that α0 is fixed by all the elements in G.

Suppose there exists an i with 1 ≤ i ≤ p − 1 and αi 6= 0, then αi 6∈ K since σ

does not fix αi. This implies that M = K(αi) since [K(αi) : K] = p = [M : K].

Furthermore, from (12.1), we conclude that σ(αpi ) = αpi and thus, αpi ∈ K. In

other words, we may choose α = αi and the proof of our lemma is complete.

To complete the proof, we show that there is indeed an i with 1 ≤ i ≤ p − 1

such that αi 6= 0. Suppose the contrary and that αi = 0 for 1 ≤ i ≤ p− 1. Then

adding up αi, including the case i = 0, we conclude that

α0 =

p−1∑
i=0

αi =

p−1∑
i=0

p−1∑
j=0

ζ−ijσj(β) =

p−1∑
j=0

σj(β)

p−1∑
i=0

ζ−ij = pβ. (12.2)

Observe that since

α0 =

p−1∑
j=0

σj(β),

σ(α0) =

p−1∑
j=0

σj+1(β) = α0,

and this implies that α0 ∈ K. The identity (12.2), namely, pβ = α0, together
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with α0 ∈ K, implies that β ∈ K. This contradicts our assumption that β 6∈ K
and we conclude that there exists an i with 1 ≤ i ≤ p− 1 such that αi 6= 0.

12.2 Galois’ Theorem for solvable extension

theorem 12.3 Let L be a Galois extension of F . The following are equivalent:

(a) L is a solvable extension of F .

(b) Gal(L|F ) is a solvable group.

Proof

We will show that (a) implies (b). We first reduce to the radical case. Since L is

solvable, there exists an M containing L which is radical over F . Let N be the

Galois closure of M over F . By Theorem 11.3, we deduce that N is radical over

F .

It suffices to show that Gal(N |F ) is solvable. This is because Gal(L|F ) '
Gal(N |F )/Gal(N |L) and Gal(L|F ) is solvable since it is a quotient group of a

solvable group, by Theorem 10.2.

Since N is radical over F , there exists F0 = F, F1, · · · , F` = N such that

F0 ⊂ F1 ⊂ · · · ⊂ F`

such that Fj = Fj−1(γj) with γ
qj
j ∈ Fj−1. Let ζ be a primitive q1q2 · · · q`-th root

of unity. Consider the chain of fields

F ∗0 ⊂ F ∗1 ⊂ · · · ⊂ F ∗` ,

where F ∗j = Fj(ζ). It could happen that F ∗j = Fj−1(ζ, γj) (for example, when

γ
qj
j = 1) and in this case we discard F ∗j . We then obtain a chain of fields

F ∗0 ⊂ F ∗j1 ⊂ · · · ⊂ F
∗
jk

= N(ζ),

with γ
qjs
js
∈ F ∗js−1 and γjs 6∈ F ∗js−1. Note that by Theorem 4.10, we conclude

that xqjs − γqjsjs is irreducible over F ∗js−1 and therefore

[F ∗js : F ∗js−1] = qjs .

By applying the Galois correspondence, we obtain the series of groups

Gal(N(ζ)|N(ζ)) ⊂ · · · ⊂ Gal(N(ζ)|F ∗j1) ⊂ Gal(N(ζ)|F (ζ)),

with Gal(N(ζ)|Fjs−1)/Gal(N(ζ)|Fjs) isomorphic to a cyclic group of order qs
and this implies that Gal(N(ζ)|F (ζ)) is solvable. By Theorem 12.1, we conclude

that Gal(N |F ) is solvable and this, as mentioned earlier, implies that Gal(L|F )

is solvable.

We now show that (b) implies (a). Let L be Galois over F with solvable Galois
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group. Let m = |Gal(L|F )| and suppose ζ is a primitive m-th root of unity. By

Theorem 12.1, we conclude that Gal(L(ζ)|F (ζ)) is solvable since Gal(L|F ) is

solvable. We claim that

Gal(L(ζ)|F (ζ))|
∣∣|Gal(L|F )|. (12.3)

To see this, we define the homomorphism

ϕ : Gal(L(ζ)|F (ζ))→ Gal(L(ζ)|F )/Gal(L(ζ)|L),

by

ϕ(σ) = σGal(L(ζ)|L).

Note that the kernel of ϕ is the 1Gal(L(ζ)|F (ζ)) and this implies that Gal(L(ζ)|F (ζ))

is isomorphic to a subgroup of Gal(L(ζ)|F )/Gal(L(ζ)|L) ' Gal(L|F ). This

proves (12.3). Since Gal(L(ζ)|F (ζ)) is solvable, there exists a chain of groups

Gn ⊂ Gn−1 ⊂ · · · ⊂ G1 ⊂ G0 = Gal(L(ζ)|F (ζ)),

such that Gj−1/Gj is cyclic of prime order qj . Note that qj divides m. By the

Galois correspondence, we obtain a chain of fields

F (ζ) ⊂ LG1 ⊂ · · · ⊂ LGn−1 ⊂ LGn .

Note that [LGj : LGj−1
] = qj and these fields contain the primitive qj-th root

of unity since it contains ζ which is a primitive m-th root of unity. By Lemma

12.2, we deduce that LGj = LGj−1
(αj) with α

qj
j ∈ LGj−1

and therefore, L(ζ) is

radical over F (ζ). Clearly F (ζ) is radical over F . Therefore by Theorem 11.2(a),

we conclude that L(ζ) is radical over F . Now L(ζ) contains L and so this implies

that L is solvable over F and the proof is complete.

12.3 Solving polynomials by radicals

All fields in this section will be of characteristic 0.

definition 12.1 Let f(x) ∈ F [x] be nonconstant with splitting field L.

(a) A root α ∈ L of f(x) is expressible by radicals over F if α lies in some radical

extension of F .

(b) The polynomial f(x) is solvable by radicals over F if L is a solvable extension.

theorem 12.4 Let f(x) ∈ F [x] be irreducible. Then f(x) is solvable by radi-

cals over F if and only if f(x) has a root expressible by radicals over F .
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Proof

If f(x) is solvable by radicals over F then the splitting field of f(x) is solvable.

This implies that L lies in a radical extension and all the roots of f(x) are

expressible by radicals over F . Conversely, suppose f(x) has a root α in some

radical extension of L. This means that F (α) is solvable. By Corollary 11.4, we

know that if M is the Galois closure of F (α) over F , then M is solvable. Since

a Galois extension is normal and f(x) is irreducible over F with a root in M ,

we conclude that f(x) splits completely over M . Thus M contains the splitting

field L of f(x) over F . Hence, L is solvable and the proof is complete.

If f(x) ∈ F [x] is irreducible and L is the splitting field of f(x), then the Galois

group of f(x) is Gal(L|F ). By Theorem 12.3, we conclude the following:

theorem 12.5 A polynomial f(x) ∈ F [x] is solvable by radicals over F if and

only if the Galois group of f(x) over F is solvable.

We can now apply the above theorem to polynomials of low degrees.

theorem 12.6 If f(x) ∈ F [x] has degree n ≤ 4, then f(x) is solvable by

radicals.

example 12.1 The polynomial f(x) = x5 − 6x + 3 is irreducible over Q

and has two complex roots since it has two turning points for which one is

above and the other is below the x-axis. The Galois group of the splitting field

of f(x) is transitive on the roots and its order is divisible by 5. By Cauchy’s

theorem, the group contains an element that corresponds to a 5-cycle in S5.

Since the Galois group also contains a transposition corresponding to the complex

conjugation which switches the two complex roots, we deduce that the Galois

group is generated by a 5-cycle and a 2-cycle and must be isomorphic to S5.

Since S5 is not solvable, we conclude that f(x) is not solvable by radicals.

12.4 Artin’s proof of the Fundamental Theorem of Algebra

theorem 12.7 Every nonconstant polynomial in C[x] splits completely over

C.
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Proof

It suffices to show that every nonconstant polynomial in R[x] splits completely

over C. Let f(x) ∈ R[x] and L be its splitting field. Note that L is Galois over

R. Let G = Gal(L|R). Let H be defined as {e} if |G| is odd and H be a 2-Sylow

subgroup of G if |G| is even.

By the Galois correspondence, the fixed field LH has degree [LH : R] = [G :

H] = |G|/|H|.. This is odd by definition of H. This implies that LH has odd

degree over R. Let LH = R(α). Then the minimal polynomial h(x) of α has

odd degree. But this means that h(x) has a root in R and h(x) being irreducible

implies that the degree of h(x) is 1. This forces LH = R and G = H. Therefore

|G| must be a power of 2. Let |G| = 2n. If n = 0, then G is trivial and this

implies that L = R and so f(x) splits completely over R. Suppose n ≥ 1. Since

p-groups are solvable, we conclude that G is solvable. Let

{e} = Gn ⊂ Gn−1 ⊂ · · · ⊂ G1 ⊂ G0 = G

be such that Gi CGi−1 of index 2 for 1 ≤ i ≤ n. This the chain of fields

LG0 ⊂ LG1 ⊂ · · · ⊂ LGn
such that [LGi : LGi−1 ] = 2 for 1 ≤ i ≤ n. Suppose n ≥ 1, then [LG1 : R] = 2.

The minimal polynomial of the primitive element of LG1
is quadratic with no

real roots and hence LG1 ' C.

Suppose n ≥ 2. Then LG2
is of degree 2 over C and we know that this is

impossible since every quadratic polynomial in C splits completely over C. Hence

we must have n = 1, which implies that L = LG1
' C. It follows that f(x) splits

completely over C.



13 Geometric constructions

13.1 Constructible numbers

Recall that a straightedge is an unmarked ruler. A compass is a device used to

draw circular arcs. Using a straightedge and compass, we can produce points on

a plane starting with two given points 0 and 1. We now carefully describe the

points, lines and circles which we can construct using straight edge and compass

starting from 0 and 1.

C1. From two points α and β, we can draw a line ` that passes through α and β

as illustrated in the following diagram using a straightedge:

βα

C2. Given three points α, β and γ, we can draw a circle C with center γ whose

radius is the distance between α and β.

βα γ

|α− β|
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P1. The point of intersection of distinct lines `1 and `2.

`1

`2

p1

P2. The points of intersection of a line ` and a circle.

p1

p2

`

P3. The points of intersection of two circles.

p1

p2

We identify the plane as the geometric representation of C. Constructing a
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point on the plane will mean constructing a complex number. As mentioned

earlier, we will start our construction from 0 and 1.

definition 13.1 A complex number α is constructible if there exists a finite

sequence of straightedge and compass constructions using C1, C2, P1, P2, and

P3 that begins with 0 and 1 and ends with α.

example 13.1 2 and i are both constructible.

example 13.2 To construct a regular polygon with n sides with center 0, we

need to construct e2πi/n in C. We will determine n for which a regular n-gon

can be constructed from 0 and 1.

13.2 The field of constructible numbers

theorem 13.1 The set

C := {α ∈ C|α is constructible.}

is a subfield of C. Furthermore,

(a) α = a+ ib ∈ C if and only if a, b ∈ C,
(b) α ∈ C implies that

√
α ∈ C.

Proof

We first show that C is a subgroup of C under addition. Let α ∈ C. We draw a

straightedge connecting α to 0 and beyond, followed by marking −α using the

compass.

0 α−α

Suppose α, β ∈ C. If α, β and 0 are collinear, then we construct α+β as follow:
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α 0 βα+ β

or

α0 β α+ β

If α, β, and 0 are not collinear, then we use the compass to create α + β as

follow:

α

0 β

α+ β

This shows that (C,+) is a group.

Before showing (C−{0}, ·) is a group, we first show (a). If a, b ∈ C, then certain

a+ ib ∈ C since i ∈ C and (C,+) is a group.

Suppose a+ ib ∈ C with a, b ∈ R. We may then obtain a and b as follow:

0

We next show that (C − {0}, ·) is a group. We will need to recall how we

construct a line parallel to a given line joining two given points. The construction

is similar to constructing a parallelogram. We construct two circles, one with

center v with radius |w − u| and the other circle with center w with radius

|u− v|. The following is the diagram for this construction:
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u

v

w

p

In the above diagram, if we choose u = i, w = ib, v = a, then p = ab. This

shows that ab is constructible if a, b ∈ C. If we choose u = ia, v = 1, w = i, then

p = 1/a. This implies that if a ∈ C then 1/a ∈ C.
Finally, we show that if a nonzero a ∈ C then

√
a ∈ C. We write a = reiθ.

Given θ which is constructible, we can always bisect θ. We must now show that

given r, we can construct
√
r. This is done by constructing the point p by using

the following diagram:

r r + 1

α

β

The length between α and β is
√
r.

Remark 13.1 The number e2πi/5 is constructible since

e2πi/5 =
−1 +

√
5

4
+
i

2

√
5 +
√

5

2
.
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13.3 A characterization of C

theorem 13.2 The complex number α belongs to C if and only if there are

subfields

Q = F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn ⊂ C

such that α ∈ Fn and [Fj : Fj−1] = 2 for 1 ≤ j ≤ n.

Proof

Suppose

Q = F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ C,

where [Fj : Fj−1] = 2. Then Fj = Fj−1(
√
αj) for some αj ∈ Fi. We now prove

by induction that Fj ⊂ C. Note that Q = F0 ⊂ C. Suppose Fj−1 ⊂ C. Then αj is

constructible. This implies that
√
αj is constructible. Since C is a field, it must

contains Fj−1(
√
αj) = Fj . Therefore Fj ⊂ C for 1 ≤ i ≤ n. Finally, since α ∈ Fn,

we deduce that α ∈ C.
Conversely, given α ∈ C. We will construct F0, F1, · · · , Fn with [Fj : Fj−1] = 2,

which eventually contains α. We used induction on N , the number of times we

P1, P2 and P3 beginning with points on Q ⊂ C.
For N = 0, α ∈ Q ⊂ C.
Next, we observe that if a, b are constructed in N − 1 times of P1, P2 and P3,

then there exists

Q ⊂ F1 ⊂ · · · ⊂ F`

and

Q ⊂ F ′1 ⊂ · · · ⊂ F ′m

with [Fi : Fi−1] = 2 and [F ′i : F ′i−1] = 2, with a ∈ F` and b ∈ F ′m. Hence, a, b is

contained in F`F
′
` , with

Q ⊂ F1 ⊂ · · · ⊂ F` ⊂ F`F ′1 ⊂ · · · ⊂ F`F ′m.

Here

[F`F
′
i : F`] = [F ′i : F ′i ∩ F`] = 1 or 2.

This means that if ak are constructed in N − 1 steps with P1, P2 or P3 starting

from points in Q, there are fields Fj such that [Fj : Fj−1] = 2 with ak ∈ Fn
where Fn is the last field in the inclusions.

Now, suppose α is constructed in N > 1 steps where the last step uses P1, the

intersection of distinct lines `1 and `2. But `1 was constructed from distinct α1

and β1 using C1 and `2 was constructed from distinct α2 and β2. By induction
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assumptions, there exist

F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ C,

where [Fj : Fj−1] = 2 such that Fn contains real and imaginary parts of

α1, β1, α2, β2. We aim to show that Fn contains the real and imaginary parts

of α. Suppose `1 has equation a1x+b1y = c1 and `2 has equation a2x+b2y = c2,

a1, b1, c1, a2, b2, c2 ∈ Fn. If u and v are real and imaginary parts of α, then(
u

v

)
=

(
a1 b1
a2 b2

)−1(
c1
c2

)
.

This implies that u, v ∈ Fn, which implies that α ∈ Fn or Fn(i).

If the last step of α uses P2, it is the intersection of a line and a circle. This

means that the real and imaginary parts of α, say u and v, satisfy the equation

(u− ω1)2 + (v − ω2)2 = (u1 − v1)2 + (u2 − v2)2 (13.1)

and

a1u+ b1v = c1.

If a1 6= 0,

u =
−b1v − c1

a1
. (13.2)

Substituting this into (13.1), we conclude that v ∈ Fn(ξ) where ξ2 ∈ Fn. Using

(13.2), we conclude that v ∈ Fn(ξ). Hence α ∈ Fn(ξ) or Fn(ξ)(i). If b1 6= 0 but

a1 = 0, then we arrive at the same conclusion using similar argument.

If the last step of constructing α uses P3, then by writing the equations of

the two circles and removing the terms x2 + y2, we obtain the equation of a line

passing through the two points of intersection of the circles. The line, together

with the circle, reduces our argument to the previous case.

corollary 13.3 If α ∈ C, then [Q(α) : Q] = 2m for some positive integer m.

Proof

If α ∈ C, then Q = F0 ⊂ · · · ⊂ Fn, [Fj : Fj−1] = 2 and α ∈ Fn. Therefore,

[Fn : Q] = 2n. Since Q(α) ⊂ Fn, we find that [Q(α) : Q] = 2m,m ≤ n.

example 13.3 The angle π/9 cannot be constructed because

[Q(cos(π/9)) : Q] = 3.
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13.4 Algebraic numbers and C

We have seen in Corollary 13.3 that if α ∈ C then [Q(α) : Q] = 2m. Can we say

that α ∈ C if [Q(α) : Q] = 2m? The answer is no. The following result indicates

when an algebraic number is constructible.

theorem 13.4 Let α ∈ C be algebraic over Q. Let L be the splitting field of

minQ(α). Then α ∈ C if and only if [L : Q] is a power of 2.

Proof

Suppose [L : Q] = 2m. Since L is Galois over Q,

|Gal(L|Q)| = [L : Q].

Now |Gal(L|Q) is solvable and there exists Gj such that

{e} = Gn ⊂ Gn−1 ⊂ · · · ⊂ G1 ⊂ G0 = Gal(L|Q),

GjCGj−1, [Gj−1 : Gj ] = 2. By Galois correspondence, we obtain a chain of field

extensions

Q = LG0 ⊂ · · · ⊂ LGm = L,

with [LGj : LGj−1 ] = 2. Since α ∈ L and [LGj : LGj−1 ] = 2 for 1 ≤ j ≤ m, we

conclude by Theorem 13.2 that α ∈ C.
To prove the converse, we will show that C is a normal extension of Q. Let

f(x) be an irreducible polynomial with a root δ ∈ C. We need to prove that f(x)

splits completely over C. Let L be the splitting field of f(x) over Q. Let β be any

root of f(x). Then there exists σ ∈ Gal(L|Q) such that σ(δ) = β since Gal(L|Q)

is transitive on the roots of f(x). Now, since δ is constructible, we have

Q = F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ C,

where [Fj : Fj−1] = 2 and δ ∈ Fn. Applying σ to the chain of fields, we obtain

Q ⊂ σ(F1) ⊂ · · · ⊂ σ(Fn) ⊂ C.

Note that Fj = Fj−1(
√
ξ) for some ξ ∈ Fj−1. and this implies that

σ(Fj) = σ(Fj−1)(σ(
√
ξ)).

Now, σ(
√
ξ)2 = σ(ξ) ∈ σ(Fj−1). Furthermore, σ(

√
ξ) 6∈ σ(Fj−1) for otherwise,√

ξ ∈ Fj−1 which is not possible by our choice of ξ. Hence,

[σ(Fj) : σ(Fj−1)] = [Fj : Fj−1] = 2.

Since β lies in σ(Fn), by Theorem 13.2, we deduce that β ∈ C and hence, C is

normal.

Next, let α ∈ C and L be the splitting field of g(x) = minQ(α). Then L = Q(γ)

for some γ ∈ L. Now, L is the Galois closure of Q(α) and must therefore be
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contained in C, since L the smallest field which contains Q(α) and is Galois over

Q. This implies that γ ∈ C. By Theorem 13.2, [Q(γ) : Q] = 2m. But Q(γ) = L

and we conclude that [L : Q] = 2m.

example 13.4 Let α be a root of the irreducible polynomial x4 − 4x2 + x+ 1

and [Q(α) : Q] = 4. But [L : Q] = 24 and hence α 6∈ C.


