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1.1

Cubic Equations

The well known quadratic formula

Let C be the set of complex numbers and x be a complex variable. A polynomial
over C is an expression of the form

-1
anx™ + ap_12™ " + -+ a1z + aop,

where a,, # 0 and a; € C,0 < j < n. The degree of a non-zero polynomial
p(z) = apz™ +a,_12" 1+ -+ a1z +ag is defined to be n. Note that the degree
of the “constant polynomial” p(x) = ag where ag # 0 is 0. The degree of p(z) = 0
is undefined. (It is sometimes defined as —o0.)

A polynomial of degree n > 1 is said to be monic if a,, = 1. In general, we may
replace C by any commutative ring with identity R and define a polynomial of
degree n over R as an expression of the form

-1
anx™ + ap_12" " + -+ a1z + aop,

with a; € R for 0 < j <n and a, # 0.
A complex number « is said to be a solution of the polynomial equation

an®™ +an 12"t ag =0
where a; € C,0 < j <, if
And™ + ap_10" 4+ aja+ag = 0.

Since C is a field and a,, # 0, we may divide the polynomial equation by a,, and
consider polynomial equation where the polynomial is monic. The solutions to
the polynomial equation are called the roots or zeroes of the polynomial.

When n = 2, we learn from high school (or secondary school) that the solution
to

22+ br+c=0, (1.1)
is

o —b+Vb% —4c

5 (1.2)
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1.2 Cardan’s formulas for the cubic equation 3

In order to derive (1.2), we first set z = y — b/2 and rewrite (1.1) as

b\ > b
(y2> +b<y2>+00,

which simplifies as

b2
2 —_— =
Yy +c 1 0
This yields
b2
Yy = + Z ¢,

which implies that
b b2 —b+b? —4c
=g er 5

Remark 1.1 The derivation of the quadratic formula is usually done by “com-
pleting the square”. Here, we emphasize on the removal of the coefficient of x in

(1.1).

Cardan’s formulas for the cubic equation

A cubic monic polynomial equation is of the form
23 +bx? +cx+d=0. (1.3)

Motivated by our approach in the previous section, we will first remove the 2
term by letting = y — b/3. The substitution yields

Y +py+q=0 (1.4)
with
b2
p= Y +c
and
q= %b?’ — % +d.

The above discussion shows that any cubic polynomial equation can be written in
the form (1.4). The polynomial equation (1.4) is called a reduced cubic polynomial
equation. In order to find the solutions of a cubic polynomial equation, it suffices
to find the solutions of the reduced cubic polynomial equation.

When p = 0, (1.4) has solutions —¢'/3, —wq'/? and —w?q'/?, where w = e
We will next assume that p # 0 and determine the solutions of (1.4).

2mi/3



Cubic Equations

Let y = u + v and observe that (1.4) takes the form
y® +py+q=u® 4+ 03 + 3uv(u+v) + p(u+v) +q=0. (1.5)
Suppose u and v are chosen such that
3uv = —p. (1.6)
Then we find from (1.5) that

3
u3+v3+q=u3+<p> +q=0 (1.7)
3u

where we have used (1.6) and the fact that p # 0 (which implies that u # 0).

This yields
6 s P
- —==0. 1.8
gt~ (1)

This implies that

2+ 4p3 /27
oy VO

2 2
Let
4p3
55 = ¢% + —.
3=¢q + 27

The solutions to (1.8) are then contained in the set
{wiz, Wizl <j <3} (1.9)

where

3/ q \/g 3/ 4 \/g

a=\g T mda=ymg -5

Note that the cube roots in z; and z5 are chosen so that

2129 = p
122 = — 5
3
since
3
3.3_ D
2725 = oY

Because of the above relation between z; and z,, the six solutions in (1.9) pair
up to yield three solutions for (1.4). Therefore,

p
Yy1=21— 45— =21+ 2.
321

The other two solutions of the cubic monic polynomial equation are
Yo = w21 +wiz

and

2
Yz = w21 + wza.
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1.3 Permutations of roots 5

EXAMPLE 1.1 [p. 209, Rotman, Advanced Modern Algebral
Consider the polynomial equation
2% — 15z — 126 = 0.

Here p = —15,q = —126. We may let z; = 1 and 23 = 5. The solutions of the
polynomial equation are

6,5w + w? = —3 + 23, 5w’ + w = —3 — 2iV/3.

Permutations of roots

In the previous section, we have seen that the solutions of y> + py +q = 0 are

Y1 = 21 + 22,

Y2 = w21 +w?z

and
Y3z = w2z1 + wzo,
where
= {3 Co ve)
and

SN YOV}

32:1 2
We now express z; and 29 in terms of y1,ys and y3 and arrive at the following
six solutions of 25 + qz3 — p®/27 = 0:

1
=3 (y1 + w2 + wys) (1.10)
1
=3 (y1 + wy2 + w2y3) )
1
wze1 = g (wyl + Y2 + w2y3) )
1
wep =3 (wyr + w?ys +y3)
1
w?zy = 3 (w?yr +wy2 +y3)
and
2 Ly
Wiz =3 (w1 + y2 + wys) -



Cubic Equations

Let S, be the set of permutations on {1,2,---, n}. It is known that S,,
together with the composition of permutations, forms a group. A cycle

(a1 as -+ a1 ag)

is used to represent the map sending a; to as, as to as,---, ay—1 to ay and ay
to a1. An element o € S, is represented by a product of cycles. A transposition
of S, is a cycle of the form (a; a3). If o € Sy, then o can be expressed as a
product of transpositions. In other words, ¢ = 7175 - - - 7+ for some transpositions
7j,1 < j < t. The representation of ¢ in terms of transpositions is not unique.
However, the parity of ¢ is invariant regardless of the representation. Therefore,
we may define sgn : S, — {£1} as sgn(o) = (—1)". The function sgn is a
homomorphism of groups from S, to the group of two elements it is known as
the signum on S,.

EXAMPLE 1.2 The group
S ={1@E)1 2 3,0 3 2,0 2@),0 32,2 )DL
Note that sgn((1 2 3))=1,sgn((1 2)(3)) = —1. Note that the group
As = {0 € Ss|sgn(0) = 1}
forms a subgroup of Ss3. In general, the set
A, = {0 € Sy|sgn(o) =1}

forms a subgroup of S,,.

Let G be a group and X be a set. We say that (G, ) acts on X if there exists
. GxX—>X

such that
(i) gre(g202) = (g1 %g2) 0z,
(i) lgex =uz.
Note that we write g @ z instead of e(g, x).
The group S3 acts on the roots {y1,y2,y3} of y> + py + ¢ by
0°Yj = Yo(j)-
With this definition (extended by linearity), we see that

(1 2)oz1=(1 2)o(y1 +wys +wys) = y2 + w1 + wys = w2

and

(1 2 3)oz =w?z.
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1.4 Quartic polynomials 7

By direct computations, we find that Ss acts transitively on the roots of
2% 4 g2 —p3/27.

It is important to note that (1 2 3) o2} = 23 for i = 1 and 2. This means
that 2} is “fixed” by the cyclic subgroup generated by (1 2 3) and this is the
main reason why a cubic polynomial equation is solvable as one can predict that
2?3 lies in a “quadratic field extension” over Q. We will make these statements
precise as we progress in our course.

Quartic polynomials

The roots of a reduced quartic polynomial z*+ga+rz+s can also be expressed in
terms of “radicals”, which are expressions involving %/ f(q,r, s), where f(q,r,s)
are rational functions involving ¢, and s. Let a;,j = 1,2,3,4 be the roots of
the above quartic polynomial. Let

21 = (Oél + 042)(053 + 064),

zo = (a1 + a3)(as + aa),

and
23 = (Oél + Oé4>(042 + Ozg).
If
4
o1 = E ay,
Jj=1
09 = E Qg
1<i<j<4
g3 — E Q0O
1<i<j<k<4
and

04 =— 012304
Then we can show that

z1+ 22 + 23 = 202 = 2g,

2 2
2122 + 2123 + Z9%3 = 09 + 0103 — 404 =q — 48,

and

Z129223 — 010203 — 0'%0'4 — O'g = —’/‘2,



1.5

Cubic Equations

where we have used the fact that
a; +as +ag+ay =0.
This shows that z1, zo and z3 are roots of
23 —2¢2% + (¢® — 4s)z + 12,
The cubic polynomial is called a resolvent cubic of the quartic polynomial
x4+qx2+rx+s.

A quartic polynomial can have more than one resolvent cubic.

Using the formula for solving cubic polynomial equation, we are able to de-
termine the roots z;,1 < j < 3, of the resolvent cubic. We can then retrieve
oj,j =1,2,3,4 by first observing from the relation oy + ap + a3 + a4 = 0 that

(a1 + ag)? = —z1, (1 + a3)? = —25 and (a1 + ay)? = —23.

This implies, for example, that o in terms of z1, 2o and z3.

o = 5 (VTR VTR V).

The other three zeroes of the quartic polynomial are given by
1
a =5 (VI - VTR - VE),
1
S (VTR VTR - V)

ag

and

Qy

S (VT VR V).

We emphasize here that where —z1, —z5 and —z3 are not real positive numbers,
we have to be careful in our choice of \/—z;,1 < j < 3.

The Discriminant

The number 6, = b®>—4cis known as the discriminant of the polynomial z%-+bz+-c.
Note that if

dfg=—F7
p=—5"=,

—b+ /09 —b— /09
a=——=an
2
then
(o — 5)2 = 02.

In other words, the discriminant of the quadratic polynomial is the square of the
difference of its two roots. This point of view allows us to define the discriminant
of a polynomial of degree n > 2. This is given as follows:
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DEFINITION 1.1 Let p(x) = 2" + a,_12" 1 + - -+ a12 + ag. The discriminant
of p(z), denoted by A(p(z)), is defined as

Ap@) = JI (ai-ay)?

1<i<j<n

where aq, ag, - - - oy, are the roots of p(x).

We will now compute the discriminant of a reduced cubic polynomial. Write

5/1 51
21 = 5(—Q+\/573) and 29 = 5(_q_\/£)'
Then
1 1
zf—z§=§(—q+\/g)—§(—q—\/g) Z\/£~
But
2} — 25 = (21— 22) (21 —w2) (21 — w?22) .

On the other hand by (1.10), we observe that

)
21 — 22 :—ﬁ(yQ_yS)a
iw?
21 — W2y = % (y1 - y3)
and
9 w

21 —Ww 22:*%(:‘/1*3&)'

This implies that

Vo3 = —3%5 (Y1 —vy2) (y1 — y3) (Y2 — ¥3),

or

Az 4 px + q) = —27¢% — 4p°.



2.1

Symmetric polynomials

Polynomial rings in n variables

DEFINITION 2.1 A polynomial in x1, xs, - - , x, with coefficients in F' is a finite
sum of terms, which are expressions of the form cz’fl -~ xkn where ¢ € F and k;
are non-negative integers for 1 < j < n. A term is non-zero if ¢ # 0. The set of
polynomials in n variables with coefficients in F' is denoted by Fx1, xo, -, z,].

We now introduce an important example of a function in Flz1, 2o, -+, xy].

DEFINITION 2.2 Given n > 2 variables x;,--- ,x, over a field F, the discrim-
inant (associated with x1,xs, - ,x,) is defined as

Ay w)= ] (-2 € Flov-- ).

1<i<j<n

DEFINITION 2.3 The total degree of a nonzero term cz’fl coexhn o is ky 4 kg +

n
-+ + ky. The total degree of a polynomial f = f(z1,z2, - ,2,) in n variables,

denoted by deg(f), is the maximum of the total degree of the non-zero term of

I
EXAMPLE 2.1 The degree of A(z1,x2, - ,2,) is n(n — 1).

EXAMPLE 2.2 Let

Un’j(‘r17$27"' 7.’L‘n): § Liy Ly === Li;-
1<) <ig<-+-<i;<n

The degree of o, ; is j.
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2.2 Elementary symmetric polynomials and symmetric polynomials 11

DEFINITION 2.4 A polynomial f € Flxy, s, ,z,] is homogeneous if each
term in f has total degree equal to the degree of f.

EXAMPLE 2.3 If f and g are non-zero polynomial, then

deg(fg) = deg(f) + deg(g).

EXAMPLE 2.4 Show that F[z,y] is not a principal ideal domain.

Solution

Let I = {xg + yh|g,h € F[z,y]}. Note that if 1 € I then 1 = zg + yh for some
g,h € Flx,y]. But the degree of the left hand side is not equal to the degree
of the right hand side and thus, this is not possible. Therefore I # F|x,y].
Suppose I = k(z,y)Flz,y]. Then z = k(z,y)a(z,y) and y = k(z,y)b(x,y).
This means that deg(a(z,y)) = deg(b(z,y)) = 0. Therefore z = k(z,y)c and
y = k(z,y)d with ¢,d € F. Therefore, z = (¢/d)dk(z,y) = (¢/d)y, contradicting
to the assumption that z and y are independent variables.

Elementary symmetric polynomials and symmetric polynomials

Let S,, denote the set of bijections on {1,2,--- ,n}. The set S,, is a group under
the composition of bijections. The group S, acts on Flxy,za, - ,2,] in the
following way:

U'f(xlv"' amn) :f(xa(l)a"'xa(n))vo- € Snaf(xlf" ,l‘n) GF[xla"'x’ﬂ]'
DEFINITION 2.5 A polynomial f(z1,22, - ,%,) € Clz1,Za, - ,xy] is sym-
metric if

U'f(xla"' axn) :f(xa(l)a"' ,xo(n)) :f(xl,x%”' 7xn)

for any permutation o € S,,.

EXAMPLE 2.5 Another representation of A(xy,--- ,,) is given by

Az, -+ ,zn) = (=12 T (2 —=5). (2.1)
i,j=1
i#£]
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Symmetric polynomials

Given any element o € S,,, we know that o is a disjoint product of cycles. Each
cycle is a product of 2-cycles. More precisely,

(arag -+ ap—_1a,) = (ar ay) - - (a1 az)(a1 az),

reading the map from right to left. In order to show that A(zy,--- ,z,) is sym-
metric, it suffices to show that it is invariant under the action of 2-cycle. Now,
suppose i, j € {¢, k}, then

(k0) o (i — x;5) = (w; — x;),

(k0) o (xr — z5) = (x¢ — x5), (kL) o (z¢ — 7;) = (Tk — ),
(k0) o (xj — zx) = (x; — me), (kL) o (xj — @) = (2 — T1),
(k£) o (xf —xg) = (20 — xp), (kL) o (¢ — xk) = (T — )

This implies, using (2.1), that
(kz) © A($17"' 7$n) = A(3317"' 73;71)

and therefore A(zy,- -+, 2, ) is a symmetric polynomial.
EXAMPLE 2.6 Given variables z1, 2o, ,x,, define
Un,j(xlvx%‘” 7xn): Z Ty Tmy " Ty

1<mi<mo<---<mj;<n

To see that o, ; are symmetric polynomials, we observe that

S(x, @1, Tp) = (T — 1) - (T — Zp) =" — 012" L+ (=1)T0, 2"

)

(2.2)
+ -+ (=1)%0n.n,
where 0y, ; = 0y, j(®1, %2, - ,z,). Note that for 7 € S,

TO S(‘rsza e iL’n) = S(I7IT(1)7 e 7xT(n)) = S(‘T’mlax27 e 7x7l)'
Comparing the coefficients of z7 in the expansion of S(x,z1,---,z,) and
S(x,Tr(1), "+, Tr(n)) using (2.2), we conclude that

T O O'n,j(xla co ,xn) = Un,j(x7(1)7 co axT(n)) = Un,j(mlax% t ,wn)~
THEOREM 2.1 Any symmetric polynomial in F[xy,--- ,x,| can be written as
a polynomial in oy, 1, - - 0y, With coefficients in F'.

Proof

Given any positive integer N, there are finitely many positive integers k1, ko, -« - , kp,
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such that ki +ky+---+k, = N. Note that k; < N and so there are at most N +1

choices for each k;. Therefore, the number of terms of the form z{'z5*---zo»

with k1 + ko +---+ k&, = N is finite. We now order the monomials x’flx§2 - -xﬁ"
as follow: We say that

fhky 4t ky <li+-+0y
or
ifki+--+ky,=0+---+4, and k1 < {1,
or
ifky+--+ky =0l 4+ 4L, and k1 = £, ky < L,

or

or

1fl€1++kn:€1++€n andk1:€1,~-,kn,1:€n47kn<€n.

For example, xizirs < zx3z3 and rirzzl < zirdzs.

Note that with this ordering on monomials, any polynomial f € Flxy, -, 2]
has a leading monomial. For example, the leading monomial of oy, 2 is z172. In
general, the leading monomial of o, ; is 1 - - - ;.

DEFINITION 2.6 Let f € F[x1,29, - ,%,]|. The leading monomial of f, which
is called the leading term of f is denoted by LT'(f).

We are now ready to prove the theorem. It suffices to prove the theorem for
homogeneous symmetric polynomials since any symmetric polynomial is a sum
of such polynomials. Let f be a homogeneous symmetric polynomial of degree
N. Suppose that

LT(f(z1,22, - ,2n)) = cxlfl -~-x’fl”7

where k1 + ko + -+ k, = N and ¢ € F. We claim that k; > ko > --- > k.
Suppose not. Let k; > k; for i > j. Then

xlfl...xfi...x;?j ...xl]:;" <m’f1 ...x?j ...x?i...mﬁ"'
A constant multiple of the term on the right appears in f(z1,---,x,) since
f(x1,--- ,xy,) is symmetric. The above inequality contradicts the assumption

that cat ...z oy -~k is equal to LT(f(z1,- -+ ,70)).
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Symmetric polynomials

Suppose k1 > ko > -+ >k, > 0. Now

LT(oy oy o 2 o) = aft -l
Therefore, if ¢ is the coefficient of 2% - - - zk» in f(z1,--- , x,) then f(z1,--- ,2z,)—
casfl e aﬁj‘n is a symmetric polynomial of degree N with leading term smaller
than xlfl ---xkn Repeating the process with the terms in f(z1,---,,) —
cafﬁl . ~-a7’§7n7 we will eventually eliminate all monomials with degree N and
conclude that f(x1,---,x,) can be expressed in the elementary symmetric poly-
nomials. O

EXAMPLE 2.7 We now illustrate the process described in the proof above using
an example. The polynomial f(x1,z2,23) = (21 — 22)%(22 — 23)%(z1 — x3)? has
degree 6 and

LT(f (w1, 22,23)) = x‘llarg
By the process described in the above proof, we deduce that

2 2 3 3 2
flza,- - ,2n) = 031032 — 4‘73,103,3 - 4‘73,2 + 1803,103,203,3 — 27‘73,3-

Remark 2.1 Tt can be shown that the expression of any symmetric polynomial
in terms of elementary symmetric polynomials is unique. For more details, see
pp- 3537 of “Galois Theory” by D.A. Cox.

Suppose that we have field F', a ring R containing F', and elements a1, ag, -+ -,y €

R. Then the evaluation map

2 Qn

: Fley,xe, - ,z,) @ R
is defined by
50(17"'7O¢n(f(1:17x27 T axn)) = f(alyolZa T ,O[n).

The evaluation is a ring homomorphism from F[zq, 2, - ,2,] to R.
Using the evaluation map &, ... o
at the following Corollary:

which sends z; to «;, 1 <7 < n, we arrive

n

COROLLARY 2.2 Let f = 2" + a12" ' + a2 2+ --- + ap_12 + a, € C[1]
with roots ai,- - ,a,. Then the coeflicients of f(z) can be expressed in terms
of its roots as

ar = (_1)T0'n,r(alv e 7an)

forr=1,--- n.
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Remark 2.2 Please note the unusual way of naming the coefficients of 7.
Instead of using a,., we have used a,,_.



3.1

Roots of polynomials

Field extensions

A field F is a ring such that every nonzero element has a multiplicative inverse.
For any field F', we observe that nlpg is the sum of n copies of 1p.

If n1r = 0 and n is the smallest positive for which this happens, then n must
be a prime. For if n is not a prime then n = ab and either alz = 0 or blgp = 0,
contradicting the minimality of n. In other words, plp = 0 for some prime p.
When this happens, we say that the field F' has characteristic p. If nlg # 0 for
all non-zero integers, then we say that the field F' has characteristic 0. The set of
complex numbers is a field of characteristic 0. The field Z/pZ has characteristic
p. Given a field F', can we construct “new fields” that contain F'? To answer this
question, we begin with Cauchy’s construction of the complex numbers.

The complex numbers can be constructed from R[z]/(z? + 1)R[z]. If we let
m = (22 + 1)R[z] and set

a=x+m,

then we find that
a-a=-—1+m.
Note that by setting 1 =14 m and ¢ = x + m, we find that
(al +bi)(cl + di) = (ac — bd)1 + (ad + be)i)

and we “recover” the set of complex numbers.

The above construction relies on the fact if R is a commutative ring with
identity and m is a maximal ideal of R then R/m is a field. In the above example,
the ideal generated by 22 +1 is a maximal ideal of R[x] and therefore, R[x]/(2%+
1) is a field. Note that the map

¢:R— Rlz]/(2® + 1)
which sends r to r + (22 + 1) shows that the field
Rla]/(2® +1)

contains a field isomorphic to R.
We now construct more fields using the idea similar to Cauchy’s construction
of the complex numbers.
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DEFINITION 3.1 Given a ring homomorphism of fields
p: F— L,

then we say that L is a field extension of F' via ¢. We will usually identify F
with its image ¢(F) = {¢(a)|la € F} C L and write F' C L.

THEOREM 3.1 If f(x) € Fl[z] is irreducible, then there is a extension field
F C L and o € L such that f(a) =0.

Proof
Let m = f(z)F[z] and let &« =z +m. Then f(a) =0 in L = F[z]/m. O

Recall that oo € L is a root of f(x) if and only if x — « is a factor of f(x).
Thus, to say that a field L contains all roots of f(x) is the same as saying that

f@) =an(z —ar)---(x —an)

where aq,--- ,a, € L.

DEFINITION 3.2 Let f(z) € F[z] and L be a field extension of F. If
f(@) =an(z —a1)- (- an)

where aq, -+ ,a, € L, then we say that f(z) splits completely over L.

The following theorem shows that for any polynomial f(x) € Flx], f(z) splits
completely in some field extension of F.

THEOREM 3.2 (Kronecker) Let F be any field. Let f(z) € F[x] be a polynomial
of degree n > 0. Then there is a field extension F C L such that f(x) splits
completely over L.

Proof

We will prove the theorem using induction on n, the degree of f(x). If n =1
then L = F. Suppose for any field F', the assertion is true for polynomials of
degree less than n. Let deg(f(z)) = n. Then f(x) = p(x)g(x) for some irreducible
polynomial p(z) (note that g(«) could be 1r). By the induction hypothesis, there
exists a field extension Eq over F such that

Ey ~ Fla]/p(z)Flx]
such that p(a) = 0 for some o € FEj. Note that f(«) = 0 in Ej. Therefore
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f(z) = (z — a)fa(x) in Ey[z]. Now, the degree of fy(z) is less than n and
therefore, by induction hypothesis, there exists a field extension Fy of E; for
which fo(x) splits. Hence, f(x) splits completely in Fs. O

Remark 3.1 An element « is said to be algebraic over F' if f(a) = 0 for
some f(x) € F[z]. A field K is said to be algebraically closed if all elements o
which are algebraic over K are already in K. In other words, all polynomials
f(z) € K|[z] splits completely in K. An example of such field is C and this is a
consequence The Fundamental Theorem of Algebra states that C is algebraically
closed. A field extension K of F' is said to be an algebraic closure of F' if every
elements K is algebraic over F' and K is algebraically closed. Given a field F,
it can be shown, using Zorn’s lemma, that its algebraic closure exists. In other
words, if f(x) € F[z], we may regard it as a polynomial in K[z] and since K
is algebraically closed, f(z) splits completely in K. This implies that for any
field F' and any polynomial f(x) € F[z], there exists an algebraic extension K
of F such that f(z) splits completely in K. This gives another proof of Theorem
3.2. For more details of the discussion of this approach, see Chapter 8 of D.J.H.
Garling’s “A course in Galois Theory”.

Fundamental Theorem of Algebra

In this section, we give a proof that C is algebraically closed. This proof is due to
L. Euler and J.L. Lagrange. (Gauss also gave a similar proof. For more details,
see pages 67 to 68 of Cox’s book.)

THEOREM 3.3 The following are equivalent:

(a) Every non-constant f(x) € C[z] has at least one root in C.
(b) Every non-constant f(z) € C[z] splits completely in C.
(¢) Every non-constant f(z) € R[z] has at least one root in C.

Proof

To prove that (a) implies (b), we use induction on the degree of f(x). When
n =1, we write f(x) = ax + b = a(x — (=b/a)) and so, f(x) splits completely
over C. Next, suppose that n > 1 and that our assertion is true for polynomials
with degree less than or equal to n — 1. Suppose f(x) is a polynomial of degree n
and that « € C is a root of f(x). Then f(x) = (z — a)g(x) for some polynomial
g(z). By induction, g(x) splits completely over C. This implies that f(z) splits
completely over C.
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Now, (b) implies (c) because a polynomial over R is a polynomial over C and
so, f(x) has at least one root in C since (b) holds.

Finally, we show that (¢) implies (a). Assume (c). We must show that every
non-constant f(x) € Clz] has a root in C. Let f(x) = anz™ + -+ + ap and
f(z) = @pa™ +---+ap. Then the polynomial h(z) = f(x)f(x) is in R[z]. To see
this, observe that

v+pu

v W
u(z)v(z) = g c;al g dpxk = g eext,
j=0 k=0 £=0
where
€y = E dek~
k+j=¢
Since
a= > odi= Y @i,
ktj=¢ ktj=¢

we conclude that

u(z)v(z) = u(x)v(x).
Applying the above to h(z), we conclude that h(z) = h(x) and hence, h(x) €
R[z].

By (c), h(z) has a root, say «, in C. This implies that f(«)f(a) = 0. Therefore,
f(a) =0or f(a) =0.If f(a) =0, then we are done. If f(a) = 0 then f(@) =0
and @ is a root of f(x).

O

THEOREM 3.4 Every f(x) € R[z] of odd degree has at least one root in R.

Proof
We may assume f(x) is monic and let f(z) = 2" + ap_12"" ' + -+ + a12 + ap.
If a; =0 for 0 < j <n—1 then f(x) has a root, namely, 0. Suppose a; # 0 for
some j. Let M = |ag| + -+ |an—1| + 1 > 1. Then
|an-1M™ - +aol < (|lap—1|+ -+ [ao) M"!
< (U lana] + -+ lagl) M"7H = M.
This implies that
FM) =M" +ap M" " +---+ag > 0.
Similarly,
(=M)" + ap_1(=M)""" + -+ a1(m) + ao
<M a1 [MPTH o || M+ ao
<=M"+ 1+ |an—1 4+ |ag) M =0,
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where we have used the fact that n is odd. This implies that
f(=M) <.

Since f(—M) < 0 and f(M) > 0, by Intermediate Value Theorem, there exists
N between —M and M such that f(N) = 0.
O

LEMMA 3.5 Every quadratic polynomial in C[z] splits completely over C.

Proof
It suffices to consider monic quadratic polynomial of the form 22 + bz + c.. To
show that this polynomial splits over C, we need show that /b2 — 4c € C. If
b? —4c is 0, then we are done. Next, by writing b — 4c = re*?

+vb2 — 4c = +/re??/? € C.

, we conclude that

O

We are finally ready to prove the Fundamental Theorem of Algebra.

THEOREM 3.6 Every nonconstant f(z) € C[z] splits completely over C.

Proof
The proof follows a strategy of Euler and a clever idea first used by Laplace. Let
n be the degree of f. If n is odd, then by By Theorem 3.3, it suffices to prove
that Theorem 3.4, f has a root in C.

Now, suppose n is even. Write n = 2™k where m > 1 and k is an odd positive
integer. We want to prove the theorem for even n by induction on m. By Theorem
3.2, we know that there exists a field extension L of F' such that

n

fa) =] @ —ay).

j=1
Following Laplace’s clever idea, we consider the polynomial
gr(z) = H ( — (o + o) + day)
1<i<j<n

Note that the degree of g(z) is n(n —1)/2 = 2m~1(2™k — 1). We will show that
gxr(z) € Rz], i.e., the coeflicients of gx(z) are real numbers.
Consider the polynomial

Gi(z) = H (x — (zi + x5) + Azixj)

1<i<j<n
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Note that
(k é)O(l‘i—ij)
(k €)o(zk +z5)
O) o(xe+ ;) =z + 5, (k
K)o(xk—l—mg):xg—i—xk,(k‘

zi+axj,(k L
xe+j, (k

Yo (zizy) = miz; ifi,j & {k, ¢},
o (xpay) = ez, if j & {k, ¢},
)o (zexj) = xpx; if j & {k, ¢},
) o (xpae) = o).

™
~

=
~

o

E
~

(
(

Therefore, S, “acts trivially” on G, (x) which implies that

n(n—1)/2
Ga(z)= > prlzr, z0)2h,
k=0
where pg(z1,- - ,2,) are symmetric polynomials in 1,23, -+ , x,. This implies
that
pk(xla T 7xn) S R[O—n,l(xla T >$n)7 e ao—n,n(xla T 7$n>]

Under the evaluation map &, ... q, , We deduce that

n(n—1)/2
aa(@) = > prlar,-- a2,
k=0
Note that pg (a1, -, a,) can be expressed in terms of o, j(, -+, ), 1 < j <

n, which are the coefficients of f(x) up to 1. Since f € R|z],
onjlar, - an) ER1< G <m,

and therefore py(aq,- - ,a,) € R. Hence, gx(z) € Rz].

Now, if m = 1, then the degree of g, is odd and g, has a root in C by
Theorem 3.4. We conclude that if m = 1 and A € R, then there exist ¢, 5 such
that o; + a; — Aaya; € C since ga(x) has a root in C. Note that there are
infinitely many A and there are finitely many pairs (c;, o),4,5 =1,--- ,n. This
implies that there exists v # § such that

a; + o —yoyo; € C
and

o + Q5 — 5aiaj e C.
This implies that

(v —d)aya; € C.
Since v # 6 € R, ;a5 € C. Now, a; +aj — yoyar; € C implies that o; +a; € C.
Therefore, the polynomial
(. —a;)(z — a;) = 2% — (o + o))z + a;a; € Cla].

We know that from Lemma 3.5, a;, ; € C. Hence, f has a complex root (the
proof shows that it has two complex roots) and the proof of the theorem is
complete. This completes the proof that if the degree of f is 2k where k is odd,
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then f has a root in C. Next, suppose the assertion is true for polynomials in
R[z] of degree 2" 1k where k is odd. If f has degree 2™s where s is odd, then
gx(z) € R[z] will have degree 2™~ ¢ where ¢ is odd. Then by induction, gy has a
root in C. By exactly the same argument as in the case for m = 1, we conclude
that f has a root in C. O



4.1

4.2

Finite extensions and Algebraic
extensions

Recall that an extension of a field F' consists of a field L and a ring homomor-
phism

p: F— L.

We identify F with ¢(F) and we will write a field extension as F' C L.
Algebraic numbers and transcendental numbers

DEFINITION 4.1 Let L be a field extension of F' and o € L. We say that « is
algebraic over F' if there exists a nonconstant f(z) € F[z] such that f(a) = 0.
An « that is not algebraic over F' is said to be transcendental over F'.

EXAMPLE 4.1 The numbers /2 and €?™"/", where n € Z*1 are algebraic. The
numbers 7 and e are transcendental.

Given two algebraic numbers a and b, we would expect a + b and ab to be
algebraic. However, a polynomial f(x) for which a + b is a root may be rather
complicated compared to the polynomial equations satisfied by a and b. For
example, /2 is a root of 22—2 and /3 is a root of 22 —3. The minimal polynomial
satisfied by v/2 + v/3, namely x* — 1022 + 1, is not as simple as the polynomials
22 —2 and 22 — 3. It is therefore almost impossible to show that sum and product
of two algebraic numbers are algebraic by finding polynomial equations satisfied
by these numbers. New concepts need to be introduced before we can establish
the facts that sum and product of algebraic numbers are algebraic.

Minimal polynomials

Given « € L, there exists many non-constant polynomial f(z) for which f(a) =
0. Among these polynomials, we choose a “special” one for «.
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LEMMA 4.1 Let o be algebraic over F. Then there is a unique non-constant
monic polynomial p(z) € F|x] such that

(a) a is a root of p(z),
(b) If f(z) € F[z] is such that f(«) =0, then p(z) divides f(x).

Proof

Choose a polynomial p(x) with smallest degree such that p(a) = 0. We can
assume that p(x) is monic. Condition (a) is satisfied by p(z). Suppose f(x)
is not divisible by p(x). Then by division algorithm for polynomials over F|
p(z) = q(x)p(z)+r(x) where 0 < degr(z) < degp(x). This implies that r(«) = 0.
But the minimality of the degree of p(z) contradicts the existence of r(x).

To prove uniqueness, we note that if p(x) and p;(x) are polynomials satisfy-
ing conditions (a) and (b). Then p(z) divides p;(z). This implies that p(z) =
p1(z)u(x). But p1(x) divides p(z) implies that p(z) = v(z)p1(z). Hence, p(x) =
p(z)u(z)v(zr). This implies that u(z)v(x) = 1, or p(x) = £p1(x). Since p(z) and
p1(x) are monic, we must conclude that p(x) = p1(x). O

DEFINITION 4.2 Let F be a field and L be a field extension of F'. Let a € L be
algebraic over F. The monic polynomial p(z) € F[z] with smallest degree such
that p(a) = 0 is called the minimal polynomial of « over F. We will use the
notation ming(«) for the polynomial p(x).

Remark 4.1 Let a € L be algebraic over F'. We observe that p(z) = ming(«) is
irreducible over F. This is because if p(z) were reducible, then p(x) = g(x)h(x)
and either g(a) = 0 or h(a) = 0. This contradicts the minimality of the degree
of p(x). Conversely, if f(x) is irreducible over F and f(«) = 0, then p(x) divides
f(z). But this forces f(x) = p(z) since f(x) is irreducible. Therefore, we may
view p(x) is the irreducible monic polynomial over F with « as one of its zeroes.

Adjoining elements

DEFINITION 4.3 Let L be a field extension of F' and a,- -+ ,a, € L. Define

F[ala"' 7an] = {h(ala"' ,Oén)|h(2?1,"' ,xn) S F[wl,"' 7xn]}
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Note that
F[ala T 70[71] = Eal,m ,an(F[xla co axn])

Let

F(Oé]_,"' ;an) = {’7/6|775 S F[O{],"' 70471]76 7é O}
The following lemma gives a characterization of F(ay,- - , ).
LEMMA 4.2 The set F(ay,- - ,ay) is the smallest subfield of L containing F
and aq, -, Q.
Proof
The set F(aq, - ,ap,) is a subfield of L. We check that 0 € Flag, - ,a,]. If
a,b € Flag,- -+ ,ay], then ab,a +b,—a € Flaq, -+ ,ay]. Since L is a field, for
any nonzero a € Flag, - ,ay], 1/a € L. This implies that F(aq, -+ ,a,) is a
subfield of L.

Suppose K is a field containing F' and ay, - - - , ;. Since K is a field, p(ay, -+ ,ap) €
K for all p(ay, -+ ,x,) € Flz1, -+ ,xy]. This means that Fla, - - ,a,] € K.
Since K is a field, for h(aq, - ,a,) € K, 1/h(aq, - ,ap) € K and therefore,
glar, -+ yan)/h(ay, - ,a,) € K. This implies F(aq, -+ ,a,) C K. O

We say that the field F'(a1, -+ , ay,) is obtained from F' by adjoining a1, - - , ay,
where a;,1 < j < n belongs to a field extension L of F.

COROLLARY 4.3 If FC L and oy, - ,a, € L, then
F(alv"' 7an) :F(alv"' 7a7’)(a’r‘+17"' 7an)

forany 1 <r <n-—1.

Proof
The field F(ai, -, 0p)(apq1,- -+ ,ap) contains F and «;,1 < j < n and hence
it contains F(aq,- - ,ap,). Next, F(ai, - ,q.) is contained in F(a, - ,ap)
and @y, 0 ,ap € F(ag, -+, a,). Hence,
F(O[l,"' 7ar)(a1“+17"' 7an) - F(Oll,"' 7an)~
O
EXAMPLE 4.2 It is useful to represent F(ag, - ,q,) as

F(aq, - ) (g1, - ,ap). The field Q(v2,v/3) can now be written as
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Q(V/2)(v/3) and viewed as being obtained by first adjoining v/2 to Q followed
by adjoining v/3 to Q(v/2).

We will next show that if ay,--- , a,, are algebraic over F', then
F[a17"' aan] = F((Xl,"' aan)-

We begin with the case when n = 1.

LEMMA 4.4 Assume that F' C L is a field extension, and let @ € L be alge-
braic over F' with minimal polynomial p(xz) € F[z]. Then there is a unique ring
isomorphism

Fla] ~ Fla]/p(x)Fz]

that is identity on F' and maps to the coset = + p(x)F[z].

Proof

Consider the ring homomorphism ¢ : F[z] — L that sends h(z) to h(a) € L.
The image of ¢ is Fa]. As for the kernel, we suppose h(z) is sent to 0. This
means that h(a) = 0 and therefore p(x) must divide h(x). Therefore the kernel
of v is p(z)F[z]. If h(z) € p(z)F[z] then h(a) = 0 and this implies that p(x)F[x]
is contained in the kernel of ¢ and we have

ker ¢ = p(z)F|x].
By first isomorphism theorem for rings, we conclude that there is an isomorphism
¢ : Flal/p(z)Flz] = Fla].
The inverse of ¢ is ¢ from Fla] to Flz]/p(z)F[z] defined by
(@) =z + p(x)Fla], ¢ (r) = r +p(x)Flz],r € F.

Note that F' is isomorphic to F’ = {a + p(z)F|z]la € F} which is a subfield of
F[z]/p(x)F|x]. This shows that ¢ is “identity” on F. Finally, uniqueness follows
since a ring homomorphism defined on F[a] is determined by its values on F'
and a. O

THEOREM 4.5 Assume that L is a field extension and let o € L. Then « is
algebraic over F' if and only if Fla] = F(«).

Proof
If « is algebraic over F, then by previous Lemma, F[«a] is a field which contains
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both F' and «. By minimality of F(«), we conclude that F(«a) C Fla]. Now,
clearly, Fla] C F(w).
Conversely, suppose F(a) = Fa]. Then a™! € F[a] and this implies that «

satisfies a polynomial equation over F' and hence, « is algebraic over F'. O
THEOREM 4.6 Let F C L be a field extension. Let a3, --- ,a, € L that are
algebraic over F'. Then

F[ala"’ 7an] = F(ala"’ 7an)~
Proof
It suffices to show that Flaq, - ,a,] is a field. We may use induction on n. The

case k = 1 is already proved. When k = 2, we have Fa|[as] =~ Flaq][z]/(¢(x)),
where ¢(z) is minp[,,)(a2) and hence Flai]az] is a field. It remains to show
that Flaq][ae] = Flaq, as]. This follows from the fact that a polynomial in aq
and oo can be written as ag + ajas + - - + agad, with a; € Flog],0 < 5 < L
Conversely, any elements in the above form is an element in F|ag, as]. The case
where £k = n — 1 implies k = n is proved in the same way as k£ = 1 implies
k=2. O

We end this section with the following definition:

DEFINITION 4.4 A field extension L of F of the form L = F(«) for some a € L
is called a simple extension.

Gauss Lemma and Eisenstein Criterion

In general, given a polynomial over Q, we do not have an efficient algorithm to
determine the reducibility of the polynomial. In this section, we give a test of
irreducibility for a certain collection of polynomials. We first begin with Gauss
Lemma:

THEOREM 4.7 Suppose f(z) € Z[z] is nonconstant and f(z) = g(x)h(z) where
g(z), h(x) € Q[z], then there exists §(x), h(z) € Z[z] such that f(z) = §(z)h(x).

Proof

Let g(z) = f91 (z) where g (z) € Z[z] and r,s € Z. This is possible by consid-
S .

ering the greatest common divisor of the numerators of the coefficients of 27,

0 < j < degg, of g and the least common multiple of the denominators of the
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coefficients of 27,0 < j < degg, of g. Note that the greatest common divisor of
the coefficients of 27, 0 < j < deg gy, of g; is 1. Similarly, we may write

t
ne) = L)
with hy(z) € Z[z] and ¢,u € Z. Write

f(@) = —g1(x)hi(x)

Su

with g1(x), hi(x) € Z[z]. To show that f(x) is reducible over Z, it suffices to
show that su divides rt. To show that this is true, we show that if su = p®k with
(p, k) =1, then p* divides rt. Write

91(1') = béxe + -+ b
and
hi(z) = cpz™ + -+ + cp.

Since the coefficients of g;(z) are relatively prime, there exists a smallest non-
zero integer ¢ such that p does not divide b;, in other words, p|b,,0 < p < i.
Similarly, there exists a smallest non-zero integer j such that p does not divide
¢; and ple,,0 < v < j. Write

m+L

gr(@)hi(z) =) dya”
v=0

where
v
d, = E boCo—w.
w=0

Observe that since
dir; =bociyj +bicipj_1+ -+ bi_1cj11 +bic; +bij1c;_1+ -+ bigjco,

the term b;c; is not divisible by p and therefore (p, d;+,;) = 1. This implies that
(p®,d;+;) = 1. Now, by considering the coefficient of z°*7 of the polynomials on
both sides of

suf(x) = rtgr(x)hi(x),

we conclude that p®|(rt)d;+; and by Euclid’s Lemma, we conclude that p®|(rt)
since (p*,d;+;) = 1. This completes the proof that f is reducible over Z since

= (2a@) ma

The following Corollary is an immediate consequence of Gauss’ Lemma.
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COROLLARY 4.8 If f(z) € Z[z] is nonconstant and reducible over Q, then
f(z) = g(z)h(z) with g(z), h(z) € Z[z].

We now prove Eisenstein criterion.

THEOREM 4.9 Let f(z) = apn2™ + ap_ 12"t + -+ ag with n € Z*. Let p be
a prime number that does not divide a,. If p divides a; for 0 < j < n —1 and
p? does not divide ag, then f(x) is irreducible over Q|x].

Proof

Suppose f(x) is reducible in Q[z]. Then by Gauss lemma, f(z) is reducible in
Z[x), say, f(z) = g(x)h(x). Modulo p, we obtain the factorization f(z) = @,x"
in Z/pZ[x]. The ring Z/pZ[z] is a UFD and we see that f(z) is divisible only by
x. In other words, g(z) = cz’ and h(x) = dz™. This implies that ag is divisible
by p?, which is a contradiction. O

EXAMPLE 4.3 Use Eisenstein criterion to show that if p is a prime, then 2?1 +
.-+ 4 1 is irreducible over Q.

THEOREM 4.10 Let p be prime. Then f(z) = 2P — a € F[x] is irreducible over
F if and only if f(z) has no roots in F.

Proof

One direction is clear. If f(z) is irreducible over F, then f(x) has no root in F.
For if f(z) has a root o € F' then z — « divides f(x). Next, assume that f(x) is
reducible over F' and we will show that f(x) has a root in F. By Theorem 3.2,
there exists L such that f(z) splits completely. Let f(z) = (z —aq) - (z — )
where a; € L for 1 < j < p. If oy = 0 then f(z) has a root in F'. Hence o # 0
and let (j = aj/ay. Then of = a = of implies that ¢} = 1. This follows that

f@) = L@ = ¢au),

where ¢; = 1. This implies that if f(z) is reducible over F', then there is a
polynomial of the form [];_,(z — (j,«1) that lies in F[z] and divides f(z).
Assume the polynomial is of the form (z — ¢, a1)(z — (ja1) -+ (z — (. 0n).
This means that (;, (5, ---(j,0f € F. Since s < p, we may find n, m such that
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sn + pm = 1. Therefore,

(G Gio G o = (Gy G G) P = (¢ Gy -+ Gua) a™ € F.

But ((¢j, ¢, <+ ¢.)" 1)’ = a and so, F contains a root of f(z).

Remark 4.2 1In the case when F' is real and p is an odd prime, we know that
2P — a = 0 can have only one real root, namely, ¢/a. By the above theorem, we
deduce that P — a is irreducible over F if and only if ¥/a & F.

The degree of a field extension

If L is a field extension of F', then L can be viewed as a vector space over F'.
This motivates the following definitions.

DEFINITION 4.5 Let F' C L be a field extension. Then L is a finite extension
of F if L is a finite dimensional vector space over F'.

DEFINITION 4.6 Suppose L is a finite field extension of F', then the degree of
L over F, denoted by [L : F] is the dimension of L viewed as a finite dimensional
vector space over F, The degree [L : F] = oo if L is not a finite dimensional
space over F'.

LEMMA 4.11 Let F C L be a field extension. The degree [L : F| = 1 if and
only if L = F.

Proof

If [L : F] = 1 then L is a one dimensional vector space over F and hence
L = F. Suppose L = F, then the dimension of L over F' is 1. This implies that
[L:F)=1. O

THEOREM 4.12 Suppose L is a field extension of F' and o € L. Then « is
algebraic over F if and only if [F(«) : F] is finite.
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Proof

If « is algebraic over F, then any elements in F'(«) can be written as an F-
linear combinations of 1,a,--- ,«
implies that F(«) is a finite dimensional vector space over F' and therefore,

"1 where n is the degree of ming (). This

[F'(«) : F] is finite. Suppose [F(«) : F] is finite. Then 1,a,--- ,0?,- -+, cannot all
be independent over F'. Hence, there exists a polynomial p(x) such that p(a) = 0.
This implies that « is algebraic over F'. O

THEOREM 4.13 Suppose F' C L is a field extension and « € L is algebraic. If

n is the degree of ming(a) then 1, - -+ ,a"~! forms a basis of F((«) over F and
[F(a): F] =n.

Proof

Suppose the degree of p(z) = ming(a) is n. We claim that 1,a,--- ,a""! are

independent over F'. Suppose not. Then there exists a relation with 0 < m < n—1
such that

bg +bra+ -+ bpa™ =0.
This means that p(x) divides by + byz + - - - + b, 2™, which is impossible since

degp(z) = n. Hence, 1,a, -+ ,a""!
Next, if § € F(a) = F[a] then

are linearly independent over F.

B=co+cra+--+ca”+---+ca’, s> n.

Let g(x) = co + c1x + - - - 4+ ¢csa®. By the Quotient-Remainder Theorem, we find
that

9(z) = p(x)q(z) + r(z)
where r(z) = 0 or 0 < deg(r(x)) < n — 1. This implies that 8 = g(a) = r(a)
and 3 is an F-linear combination of 1,c,---,a”~!. This implies that F[a] is
spanned by 1,q, -+ ,a" ! and so, [F(a) : F] = n. O

THEOREM 4.14 Let L be a field extension of ' and o« € L. The element « is
algebraic over F if and only if [F(«) : F] is finite.

Proof
If « is algebraic over F then [F(«) : F| = deg(ming(«)) is finite. Conversely, if
[F(c) : F] is finite, we know that the elements in {1,a,a2,--- ,af---} cannot

be linear independent. Therefore, there exists m such that
0¢m+€17nflamf1 +--daat+ayg=0,a; € F for0<j<m.

This implies that « is algebraic over F'. O
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The Tower Theorem

THEOREM 4.15 Suppose we have fields F' C K C L.

(a) If [K: F]=o0 or [L: K| =00 then [L: F| = co.
(b) If [K : F] < oo and [L: K] < oo then [L: F|=[L: K|[K : F|.

Proof

We prove the contrapositive version of (a). If [L : F] is finite, then [K : F] is
finite since K is a subspace of L over F. Let L be spanned by {a;|1 < j < n}
over F. Let a € L. Then a = 37", fja;. Now, f; € F C K. This shows that
L can be written as a K-linear combination of a;, 1 < j < n. This implies that
[L : K] is finite.

To prove (b), let m = [K : F] and n = [L : K. Let {a;|1 < j < m} be a basis
of K over F and {fk|1 < k < n} be a basis of L over K respectively. We claim
that the basis of L over F'is {a;fk|l <j<m,1 <k <n}.

For a € L, we have

n
o = Z Vkﬁ]ﬁ
k=1

where v, € K. But vy, can be expressed in terms of a;,1 < j < m over F. Hence
o is an F-linear combinations of elements in {a;8;x|1 < j <m,1 <k <n}.
We now prove that the elements in {a;8;|1 < j < m,1 <k < n} are linearly
independent over F'. Suppose
> wikaBe =0.

1<j<m
1<k<n

Since the elements in {fk|l < k < n} are linearly independent over K, we
conclude that for each k,
> mika =0

1<j<m

The elements in {a;|1 < j < m} are linearly independence and this forces
ik = 0,1 < j < m. Since this is true for any k between 1 and n, we conclude
that pjr = 0,1 < j <m,1 <k < n. Therefore the elements in {a;8;|1 < j <
m,1 < k < n} are linearly independent over F' and

[L:F]=[L:K]|[K:F]
O

By Theorem 4.14, « is algebraic if and only if [F(a) : F] < co. Let « and S
be algebraic over F. Then [F(«a) : F] < oo and [F(a, f] : F(a)] < oo (since S is
algebraic over F'(«) if it is algebraic over F'). Therefore by the Tower Theorem,



4.7

4.7 Algebraic extensions 33

[F(a,B) : F] < 00. Now, both o — 8 and a/8, 8 # 0, are elements in F(«, ).
By Theorem 4.15 (a), [F(ao — 8) : F] < oo and [F(a/B) : F] < oo and by
Theorem 4.14, o — 8 and «/f are algebraic over F. This means that the set
of algebraic numbers over F forms a field. We have therefore established the
following theorem:

THEOREM 4.16 Let F' C L be a field extension. The set of elements in L which
is algebraic over F' forms a subfield of L.

Remark 4.8 We can now conclude that if o, 8 € L is algebraic over F', then o
and o + 3 are algebraic over F. We also have a3~! is algebraic when 3 # 0.

Algebraic extensions

In the previous section, we have seen that if ' C L is a field extension and o € L
is algebraic over F', then F(«) is a finite extension over F. Theorem 4.15 indicates
that if 8 € F(«), then F(f) is finite over F' and therefore by Theorem 4.14, § is
algebraic over F. In other words, F(«) is a field for which every elements in is
algebraic over F'. This motivates the next definition.

DEFINITION 4.7 A field extension F' C L is algebraic if every element of L is
algebraic over F'.

We aim to show the following result connecting finite extension and algebraic
extension over F'.

THEOREM 4.17 If L is a finite extension over F', then L is an algebraic extension
over F'.

Proof

Suppose a € L. Then F(«) is a finite extension over F since L is finite over F.
Therefore, « is algebraic over F'. This implies that L is an algebraic extension of
F. O

The converse is false. The collection of all algebraic numbers over Q is an
algebraic extension over Q, denoted by Q. Note that if p is an odd prime and
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ap € Q is a root of 2P~1 4+ 2P~2 4 ... 4 1, then [Q(ay,) : Q] = p. If we assume
that [Q : Q] = N, then we would obtain a contradiction by letting p > N since

Q:Q=N2>[Q(op):Q]=p>N.

The above discussion shows that in order to determine if an algebraic extension
is finite, thus providing a “converse” to Theorem 4.17, we need one additional
condition. This is reflected in the following theorem:

THEOREM 4.18 Let F' C L be a field extension. The degree [L : F] < oo if and

only if there are ay,--- ,ap € L, algebraic over F and L = F(ay, - ,ap).
Proof
Suppose [L : F] < oo. Then there exists ay,- -+ ,a, in L, linearly independent
over F' and spans L as a vector space over F. Note that L = Fay + --- +
Fa, C F(ay, -+ ,a,). But L contains F and {a;|1 < j < n} and so it contains
F(ag, - ,a,). Hence L = F(ag, -+ ,ap).

Conversely, suppose L = F(ag, -+ ,a,) = F(aq, -+ ,an—1)(an), where the

last equality follows from Corollary 4.3. We observe that

[Far, - an—1)(an) : Flai, - ap_1)] < o0
since «, is algebraic over F(a1,- -+ ,a,—1) and by induction hypothesis, we may
assume that [F'(oq, -+ ,an—1) : F] < co. Hence, by Theorem 4.15, [F(aq, -+, o) :
F| < co. This completes the proof of the theorem. O

THEOREM 4.19 Let FF C K C L.If a € L is algebraic over K and K is algebraic
over F', then « is algebraic over F'.

Proof
If @ € L is algebraic over K, then « satisfies a polynomial equation of the form
am+am_1an1—1+...+a1a+ao =0 (41)
with a; € K for all 0 < j < m — 1. Since K is algebraic over F, the a;’s are
algebraic over F' and by Theorem 4.18, we conclude that F(ag, - ,am-1) is a
finite field extension of F'. Note that by (4.1), a is algebraic over F(ag, -+ ,m—1)
and therefore F(ag,- - ,am—1)(a) is a finite extension of F(ag,- -+ ,am—1). By
Theorem 4.15, we conclude that F(ag, - - ,am—1)(«) is a finite extension of F. By
Theorem 4.18, we conclude that F(ag,- -+ ,am—1, ) is algebraic. In particular,
a € F(ag, + ,am—1, ) is algebraic over F. O

As a corollary, we conclude that
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COROLLARY 4.20 If FF C K C L where L is algebraic over K and K is algebraic
over F', then L is algebraic over F.

Proof
Let « € L. Since « is algebraic over K and K is algebraic over F, « is algebraic
over F' and this holds for any o € L. This implies that L is algebraic over F. [
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Splitting fields

Let F' be a field. We have seen in Theorem 3.2 that if f(z) € F[z] then there
exists a field extension L of F such that f(x) splits completely. This motivates
our next definition.

DEFINITION 5.1 Let f(z) € F[z] with deg(f) =n > 0. A field extension L of
F is a splitting field of f(z) over F if

(a) f(x)=c(zr—a1)---(x —a,) where c € F and a; € L for 1 < j < n,
(b) L=F(ay, - ,ay).

EXAMPLE 5.1 The field Q(v/2,v/3) is a splitting field of (22 — 2)(2% — 3) over
Q. The field Q(i,2'/%) is the splitting field of 2* — 2 but the field Q(2'/4) since
i2t/4 ¢ Q(2'/4).

From the example Q(i,2'/*), we observe that if L is the splitting field of f(x)
of degree n over F', the degree of L over F' is not necessarily n. The following
result gives an upper bound for [L : F] in terms of the degree of f(z).

THEOREM 5.1 Let f(x) be a polynomial of degree n over F' and L be the
splitting field of f(x) over F. Then [L : F] < nl.

Proof

We want to show that for any field F' and any polynomial over F' of degree n, the
splitting field L of f(z) satisfies [L : F] < nl. We may assume f(x) to be monic.
We establish the inequality using induction on n. If n =1, [L : F] = 1 and the
conclusion is true. Suppose the inequality is true for polynomial of degree n — 1.
Let f(x) be a monic polynomial of degree n. Let L be a splitting field of f(x)
over F'. Then L = F(ay,- -+ ,ay) where aq, - -+ , o, are the roots of f(x). Write
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f(x) = (x — a1)g(z), where g(x) = by + byz + -+ + by 22" 2 + 2"~ L. From
f(z) = aptarz+- - Fan_ 12" 2" = (x—ay)(bo+brz+- - Fby_ox™ 2",
we find that

aj = —o1b; +bj_1.
Note that since bpa; = ag, we deduce that by € F(«1). By induction on j,
we deduce that b; € F(ai) and therefore g(x) € F(o)[z]. By induction, the

splitting field L of g(z) over F(ay) satisfies [L : F(a;)] < (n—1)!. Together with
[F(ay) : F] < n, we conclude that

[L:F] <nl

Uniqueness of splitting fields

We next study the uniqueness of splitting fields. Note that both Q(\/i) and
Qlz]/(z? — 2) are splitting fields of #2 — 2 over Q. The key point is that while
they are not the same, they are isomorphic.

THEOREM 5.2 Let ¢ be an isomorphism from the field F; to the field Fs.
Let fi(z) € Fi[z] and let fa(z) be obtained from fi(z) by applying ¢ to the
coefficients of fi(x). Suppose L1 and Lo are the splitting fields of f;(z) and
f2(x) over Fy and F, respectively. Then there is an isomorphism

©:L; — Ly

such that p = P

Proof
We prove by induction on n, the degree of fi(z). When n = 1, L; ~ F; and
Lo ~ F5 and we observe that p = ¢.

Suppose n > 1. We know that if ag,- - , o, are roots of fi(z) then

Ll - F(Oél,"' 70(»”)-

Consider F} C Fi(ay) C Ly, where Ly is viewed as the splitting field of g(x) =
fi(@)/(z — ay) over Fi(aq).

Step 1. Let hq(z) € Fi[x] be the minimal polynomial of «; over Fy. We know
that hq(z) must divide fi(x). Also

Fi(ay) ~ Fy[z]/hy(z) Fy[x].
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Step 2. We now find a root of fy(z) corresponding to «1. The map ¢ : Fy — Fy
induces a ring homomorphism ¢ : Fj[z] — Fy[x] that takes fi(x) to fo(z). This
isomorphism takes irreducibles to irreducibles. In particular, hq(z) is mapped to
an irreducible factor ha(x) of fo(z). Since fo(x) splits completely in Lo, we can
label the roots of fa(x) in Ly as 1, -, Bn, where 3 is a root of ha(z).

Step 3. The root B1 of fa(x) gives an extension F» C Fy(f1) C Lo, where Lo is
viewed as the splitting field of ga(x) = fa(z)/(z — B1) over F3(81). Since ha(z)
is the irreducible polynomial of 81, we conclude that

Fy5(p1) ~ Falz]/he(x) Falx].

Step 4. Since @ : Fy[z] — Fa[z] sends hy(z) to ha(z), ¢(h1(z)Fi[z]) = ha(z)Fa[z].
Therefore,

Fi[a]/hi(x) Fi[z] ~ Fala]/ho(x) Fo[z].

By Steps 1 and 3, we obtain an isomorphism ¢1 : Fy(aq) = Fa(61).
Step 5. Now, ¢1(z) = f1(z)/(x—aq) and ga(z) = fa(x)/(x—F1) have degree n—1
over Fj(ay1) and Fy(f1) respectively and ; is an isomorphism from Fj(a;) to

F»(B1). By induction hypothesis, we conclude that there exists an isomorphism
© : L1 — Lo such that ¢’F1(a1) = 1. But gpl‘Fl
proof of the theorem. O

= ¢ and this completes the

COROLLARY 5.3 If L; and Lo are splitting fields of f(z) € F[z] then there is
an isomorphism L; ~ Ly that is identity on F.

Proof
Apply Theorem 5.2 with ¢ as the identity map on F'. O

THEOREM 5.4 Let L be a splitting field of a polynomial in F[x]. Suppose
h(z) € F[z] is an irreducible polynomial with degree at least 2 and has roots
a, € L. Then there is a field isomorphism ¢ : L — L that is identity on F' and
takes a to 3.

Proof
‘We observe that

F(a) ~ Flz]/h(z)Flz] ~ F(B).

Therefore, there is an isomorphism ¢ : F(a) — F(8) with the property that
&(a) = B. Now, L is the splitting field of i(z) and contains both F'(«) and F(f5).
By Theorem 5.2, we conclude that there is an isomorphism ¢ : L — L such
that U’F(a) is an isomorphism from F'(«) to F(/3). Note that O"F(a) = ¢. Hence,
o(a) = B and the proof is complete. O
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Finite fields as splitting fields of polynomials

In this section, we establish the following

THEOREM 5.5 If L is a finite field with p™ elements, with p a prime and m a
positive integer, then L is the splitting field of 7" —x € F,[z], where F}, denote
the finite field Z/pZ.

Proof

Let f(z) = oP" — x. It is known that (see Remark 5.1) if L is a finite field,
then L — {0} is a cyclic multiplicative group. This implies that there exists an
element « € L such that L = {0,a7|1 < j < p™ — 1}. Observe that if 3 € L
then P — 3 = 0. This means that all elements in L are roots of f(z). These
are all the roots since the polynomial can have at most p” — 1 roots since it is a
polynomial over a field. Now any splitting field of f(x) must contain at least p™
elements. Since L contains exactly p™ elements, L must be the splitting field of
f(z). This completes the proof of the theorem. O

Since splitting fields of polynomials over a field F' are isomorphic, we conclude
that any finite fields with p” elements are isomorphic.

Remark 5.1 Let L* = L — {0}. Let g € L* and o(g) be the order of g. Let

= a. 5
i = I o(g)

If m = |L*| then L* is cyclic. Suppose
m < |L*|. (5.1)
By the structure theorem of finite abelian group,
L*"~Z/mZ&® - - ®Z/aZ,

with a;|a;41,7 =1,--- ,¢— 1. This means that m = a, and it also implies that if
a € L*, then « is a root of

" =1.
But in F'[z] where F is a field, the number of solutions 2™ — 1 is at most m and

therefore, |L*| < m. This contradicts (5.1). Therefore L* is cyclic.
Another way of seeing that L* is cyclic is by using the identity

> o(d) =n. (5.2)
d|n

Let n = |L*| and Cy be the number of elements in L* that has order exactly d.
If Cy is non-empty, then the element of order d generates a cyclic group with d
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elements which are roots of % — 1. Since F is a field, ¢ — 1 can have no more
than d elements. In other words, all elements of order d must be in Cy if |Cy4| # 0.
If Cy is not empty then the total number of elements in Cy is exactly ¢(d). This
is a result of the fact that if o has order d then o has order d if and only if
(k,d) = 1. Now, every element in L* has an order. Therefore,

L =n=) |Cd < ¢(d)=n,
d|n d|n

where the last equality follows from (5.2). This implies that |Cy| = ¢(d). In
particular, |C,,| = ¢(n) and therefore, L* is cyclic since C), is non-empty.

EXAMPLE 5.2 The fields Fy[z]/(23 + 2 + 1) Fa[z] and Fy[z]/ (23 + 22 + 1) Fy[x]
are isomorphic.

Normal extensions

Splitting field of a polynomial f(x) € F[z] has an important property given as
follow:

THEOREM 5.6 Let L be a field extension over F' which is a splitting field of
f(z). If g(x) is an irreducible polynomial which has a root in L then g(z) splits
completely in L.

Proof

We may suppose that f(z) and g(x) are monic and let f(z) = (x—ay) - - (z—a,).
Then L = F(ay, - ,ap). Suppose S is a root of g(z) in L. We need to prove
that all the roots of g(x) are also in L. Note that 8 € L = F(ay, - ,ap) =

Flay, -+ ,a,) and hence = h(aq, - - -, ay,) for some polynomial h(z1,-- ,2,) €
Flzy,- -+ ,2y]. Consider the polynomial
s(x) = [[ (@ = hlerqy, - army) € Ll
TESH
The roots of s(z) are all in L since a1, - ,a, € L. Furthermore, g is a root of

s(z) and if we can show that s(z) € F|[x] then we can conclude from g(x)|s(x)
that all the roots are in L.
Now consider the polynomial

S) =[] @ =z, )

TESR
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Note that we can write
n!
S(l’) = ij(xla o 7xn)x]7
=0

where

pj(xlv ce axn) = Un!,n!—j(h(xﬁ(n)a to 7x71(n))a co ah(xrﬂ;(n)v T axTng(n)))a

with 7;’s are distinct elements in S,,. Here the oy, ; is the j-th elementary sym-
metric functions in m variables. Note that p;(z-(1), -+, Zrn)) = pj(T1, -+, 2n)
and thus, p;(z1,-- -, x,) are symmetric for 0 < j < n—1. These polynomials can
therefore be expressed in terms of o, j(21, - ,xy) for 0 < j < n — 1. Using the
evaluation map sending x; to o, we conclude that p;(ai,--- ,ay) are in terms
of o, (01, -, ) which all lies in F. Therefore, s(z) € F[z] and the proof is
complete.

O

The above property of splitting fields motivates the following definition:

DEFINITION 5.2 An algebraic extension L of F' is normal if every irreducible
polynomial in F[z] that has a root in L splits completely in L.

Remark 5.2 Not all normal field extensions are splitting fields of some polyno-
mials. The field Q, the algebraic closure of Q is a normal extension that is not
a splitting field of any polynomial.

The following theorem characterizes splitting fields in terms of normal exten-
sion.

THEOREM 5.7 Suppose L is a field extension of F. Then L is the splitting field
of some polynomial f(z) € F[z] if and only if L is normal and finite.

Proof
If L is a splitting field of f(x), then L = F(ay,- - , ) is finite by Theorem 4.18
or Theorem 5.1. By Theorem 5.6, L is normal.

Conversely, suppose L is normal and finite. Since L is finite, by Theorem 4.18,
L=F(ay, -+ ,ay) where aq, - -, a, are algebraic over F. Let pi(x), -, pn(x)
be irreducible polynomials such that for each ¢, o is a root of p;(z). Let f(z) =
p1(x) -+ pnp(x). We will show that L is the splitting field of f(x). Observe that
p;j(z) has a root cj in L and L is normal. Hence, all the roots of p;(x) are in L.
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Let {B1,- -, Bs} be the roots of f(x) and let L’ be the splitting field of f(x),
namely, L' = F(B1,---, ). Note that

L=F(ay, - ,a,) CL

since {a1, -+ ,an} C {1, --,Bs}. But L' C L since by normality of L, f;’s,
1 < j < s, which are roots of p;(x),1 < i < n are in L. This implies that L' = L
and L is the splitting of f(x).

O
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Separable polynomials and separable extensions

Let F be a field. Given a monic nonconstant polynomial f(z) € F[x] with split-
ting field L, we can write f(z) = (x —a1) -+ (z — ). Note that o;,1 < j <n,
are not always distinct. We will restrict our attention to polynomials that have
distinct roots in this section.

DEFINITION 6.1 A polynomial f(z) € F|x] is separable if it is nonconstant
and its roots in a splitting field are all simple. Note that f(z) is separable if and
only if

A(f)= I (@—ay)®#o0.

1<i<j<n

Remark 6.1 The above definition of separable polynomial is not standard. Most
books require separable polynomial to be irreducible.

Another tool we need is the formal derivative of a polynomial g(z) = a,x™ +
-+ 4 ag defined by

g (z) =na,z" '+ +a.
Note that with this definition, one has
(f9) =f'g+fd

for any two polynomials in F[z]. We leave the proof of the “seemingly obvious”
statement (because of our knowledge of Calculus) as exercise.
The following theorem gives some characterizations of a separable polynomial.

THEOREM 6.1 Let f(z) be a monic and nonconstant in F[z]. The following are
equivalent:

(a) f(z) is separable,
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(b) A(f) #0,
(¢) f(z) and f'(x) are relatively prime (i.e. ged(f, f') = 1) in Fl[z].

Proof
If degree of f(x) is 1, then we define A(f) = 1. So A(f) # 0. Also (f, f') = 1.
So (a), (b), and (c) are equivalent to each other.

Assume that the degree of f(x) is greater than 1. We first show that (a) and
(b) are equivalent. Let oy, - - - , a, be roots of f(z) in some splitting field of f(z).
The definition of A(f) shows that A(f) # 0 if and only if the roots of f(x) are
distinct.

Next, we show the equivalence of (a) and (c). Let L be a splitting field of f(x)
over F. Let f(z) = (z — 1)+ (x — ay). For each 1 < i <m,

f(@) = (z — ai)hi(x),
where
hi(z) = [[(= = ay).
i
Formally differentiating f(z), we find that
fl(z) = (& — 2)hi(@) + hi(x).
This implies that
(i) = hi(eq) = [J(a; — ) #0, (6.1)
J#i
since f(x) is a separable polynomial. If (c) is false, then f(x), f’(x) have common
factor. This implies that there exist g(x) such that g(x) = (f(x), f'(z)). Note
that g(x) divides f(z) and f’(x) Therefore, g(«;) = 0 for some i and f'(«;) = 0.
By (6.1), this implies that h;(a;) = 0, which is a contradiction.
Conversely, assuming (c) is true. Then
1= A(z)f(x) + B(x)f'(x)
for some A(z), B(x) € F[z]. This implies that for 1 <7 <mn,
1= A(a;) (o) + Blaq) f'(ew)
which implies that f’(co;)B(a;) =1, or f/(c;) # 0. This implies that for 1 <14 <

n,

[T(es —ai)#0
i

and «;’s are all distinct. This implies that f(z) is a separable polynomial.  [J

DEFINITION 6.2 Let L be an algebraic extension of F.
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(a) a € L is separable over F' if ming(«) is a separable polynomial.
(b) L is a separable extension over F if every a € L is separable over F'.

LEMMA 6.2 A nonconstant polynomial f(z) € F|[z] is separable if and only if
f(x) is a product of irreducible polynomials, each of which is separable and no
two of which are multiple of each other.

Proof

Assume f(z) is separable. Then each factor of f(z) must have distinct roots in a
splitting field, then f(z) will not be separable. Hence, all irreducible polynomial
dividing f(x) is separable. Next, the irreducible polynomials dividing f(z) cannot
be identical or f(x) would have multiple roots.

Conversely, let f(z) = gi(x)---gs(z) where g;(z) are separable and irre-
ducible. Therefore g;(z) has distinct roots. If f(x) has multiple roots then there
exists ¢ # j such that g;(z)|g;(x) and g;(z)|g;(z). Therefore g;(z) is a multiple
of g;(z). O

LEMMA 6.3 Let f(z) € F[z] be an irreducible polynomial of degree n. Then
f(x) is separable if

(a) F has characteristic 0, or
(b) F has characteristic p > 0 where p t n.

Proof
By Theorem 6.1, it suffices to show that (f(z), f'(z)) = 1. Suppose F has char-
acteristic 0.

If (f(z),f'(z)) = h(x) # 1 then there exists an « in the splitting field of
h(z) such that h(a) = f(a) = f'(a) = 0. Since « is a root of f(z) and f(z) is
irreducible over F, f(x) must divide f’(z). This is impossible since the degree
of f'(x) is less than degree of f(x).

Next suppose that the characteristic of F' is a prime p. We may assume that
f(x) is monic. If f(x) = 2" +a,_12" '+ +ag, then f'(z) = nz" "1+ +a.
Since p t n, we find that f/(z) is a polynomial of degree less than the degree of
f(x). Using the argument as in the case when the characteristic of F' is 0, we
deduce that (f(z), f/(x)) =1 and hence f(x) is separable.

O

EXAMPLE 6.1 Let F be a field with characteristic 0. Show that every algebraic
extension of F' is separable.
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Solution
Let L be an algebraic extension of F'. Let @ € L. By Lemma 6.3, we deduce that
the minimal polynomial of a over F' is separable. Hence L is separable.

DEFINITION 6.3 A field F' is called a perfect field if every algebraic extension
of F' is separable.

In the above example, we showed that if char F'=0, then F' is perfect. It can
be shown that if F' is a finite field, F' is perfect.

EXAMPLE 6.2 Let f(z) be any polynomial over F' where F has characteristic
0. Show that f(z)/(f(x), f'(x)) is separable.

Solution
Let f(z) = (@ — a1)™ - (& — a)™. Let g(x) = £(@)/(f(@), f/(z)). To show
that g(z) is separable, it suffices to show that (f, f’) is divisible by (z —a;)™i 1
but not by (z — ;)™ for j =1,2,---,s.

Now, write f(z) = (z — a;)"™ fj(x), where f;(c;) # 0. Then

f(@) =mj(x — ;)™ fi(x) + (z — o)™ fi(z).
This implies that «; is a zero of f/(x) of order m; —1. So if h(z) = (f(x), f'(z)),
«a; is a zero of f'(x) of order m; — 1 since

£(2) = (= )™ ms f5(2) + (2 — 05) (@)

and (x — o) does not divide f;(x). This concludes the fact that g is separable
since g = (z —aq) -+ (x — ).

DEFINITION 6.4 A polynomial f € F[z] is inseparable if it is not a separable
polynomial. In other words, it has root with multiplicity greater than 1.

EXAMPLE 6.3 Show that if F' is a field with characteristic p, then 2P — t €
F,(t)[z] is an inseparable irreducible polynomial
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Solution

The polynomial 2P — ¢ is irreducible over F,(¢). This follows because t'/? does
not lie in F,(t). Let a be a root of f(z) = zP — ¢ in the splitting field of f(x)
over F,(t). Then a? = t. This implies that f(z) = (2 —a?) = (r — a)? and f is
inseparable.

Theorem of the primitive element

THEOREM 6.4 Let L = F(ag, - ,a,) be a finite extension where each of
o is separable over F. Then there exists o € L separable over F' such that
L = F(«). Furthermore, if F is infinite, then « can be chosen to be of the form
a=tiag + -+ tpo, for some t; € F.

Remark 6.2 We observe that if the characteristic of F' is 0, then we may remove
the condition “o; is separable over F.” This is because the minimal polynomial
of these a;’s is separable.

Remark 6.3 Theorem 6.4 shows that if a;,1 < j < n is separable over
F, then F(aj,---,ay) is a simple extension. In other words, there exists
B € F(aq,- -+ ,a,) such that F(ay, -+ ,ay) = F(f).

Proof
Let F be a field with finitely many elements. Then F' is a field with characteristic
p for some prime p. Suppose L = F(aq, - ,q,) is a finite extension where each

of o is separable over F'. Then L is a finite field extension of F' and so, it is a
finite field. It is known that finite multiplicative group of L — {0} is cyclic. This
implies that if |F| = p® and [L : F] = m, then there exists o € L such that

L—{0} ={o’[1 <j <p™ —1}.

Note that F' C L since elements in F' is a root of

Hence, L = F(a). Note that « is separable over F since the polynomial 27" 1 —1
is separable. This completes the proof of the theorem when L is finite.

We now assume that F' is infinite. Let L = F(aq, -, ay,). We will use induc-
tion on n to show that there are t{,--- ,t, € F such that
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(1) L =F(tiaq + -+ + tpay,) and
(2) tiaq + - - + tpay, is separable over F.

We begin with the case n = 2. Given L = F(f3,7). Let f(z),g(z) € F|x] be
minimal polynomials of § and v respectively. f(z) could be the same as g(x).
Let £ = deg(f(x)) and m = deg(g(x)). Let E be a splitting field of f(z)g(z). Let
B =1 and v = ;1. Let B, -, B¢ be the distinct roots of f(z) and vy, ,ym
be the distinct roots of g(z). Since F' is infinite, we can find A € F such that

Bi_ﬂr,lgr,igé,r#i,l§5,j§m,s7éj.

Vs — V5

A

This implies that
67"’_)\75 #ﬁi"’)"ijr 7&7;75 7&.7

Therefore B+ Ay # B; + Avy;, 1 <i <01 <5< m.

We first prove that F(8 + A\y) = F(5,7). The inclusion F(5 + A\y) C F(8,7)
is immediate. We want to show that 8,7 € F(8 + \v).

It suffices to show that v € F(8 + A\v), for then 8 = 8+ Ay — Ay is also
contained in the field.

Since g(x) € F[z], g(z) € F(B8+Ay)[z]. Next, f(8+ Ay— Az) vanishes at x =
and f(B+ Ay —Ax) € F(8+ A)[z]. Therefore, the ged of g(z) and f(8+ Ay — Ax)
is a non-constant polynomial in F(8 + Ay)[z].

Let h(z) = ged(g(x), f(B+ Ay — Ax)). If degh(x) > 1 then there exists v # v
such that h(y") = 0. This implies that

FB+M=2)=0
or
B+ =M +0.

This contradicts our choice of A. Hence the degree of h(z) is 1 and v € F(8+\v)
and this completes the claim that F(8,v) = F(8 + M\y).

It remains to show that 8 + Ay is separable. Let p(x) € F[x] be the minimal
polynomial of 8 4+ Ay over F. We must show that p(z) is separable. Let

s@) = [ £ = x).

Note that 8 + Ay is a root of s(z) since f(8+ Ay —Ay) = f(B) = 0. If S(x) =
[[jZ, f(z—Az;), then for 7 € Sy, S(x) = [[[2, fla—Az;) = [[[L, fla—Az(;))
So the coefficient of 2* in S(z) must be a symmetric polynomial in zy,--- , Z,.
Therefore, under the evaluation map, we deduce that the coefficient of 2* must
belong to F'. Since s(z) € F[z], we conclude that p(z) divides s(z).

Now,

s(x) =[] [J (= B+ ;).

i=1j=1
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Note B; + Ay; # Bs + Ay for all ¢,7,r,s except when ¢ = s and j = 7. We
conclude that s(z) is a separable polynomial. This implies that p(z) is also
separable. Therefore the case n = 2 holds with ¢t; = 1 and t; = A.

Suppose now that the conclusion holds for any field of the form F(81,- - , Bn_1),
that is, there exists sy, -, $,_1 such that

F(B1,- ,Pn-1) =F(s1f1+ -+ Sn—1Pn-1)

and $101 + -+ + Sp—10n—1 is separable. Write L = F(a1, - ,an-1)(an) =
F(v,a,) where v = tyay + -+ + tp—100,—1 by induction hypothesis. By case
n = 2, we conclude that F(v,a,) = F(v + \,) for some A € F. Therefore,

L= F(t1a1 -+ - ‘tnfl()énfl + )\an)

Note that tiaq + -+ - t_10ap_1 + A, is separable since tiaq + -+ + t_1Qp_1
and a,, are separable. O

Remark 6.4 We have seen that if L = F(ay,---,ay,) where o is separable
and L is finite, then L = F(a) for some separable o € L. It turns out that
if L = F(«) is finite and « is separable then L is a separable extension. This
statement will be proved after introducing Galois extension.

EXAMPLE 6.4 The splitting field of 2% — 2 is L = Q(e2™/3,21/3). We can also
write L as Q(v/—3 + 2'/3) and so, L is simple.

EXAMPLE 6.5 In this example, we show the existence of a field extension
F(B3,7) which is not simple. Of course, in this case, 8 and 7 are not separa-
ble over F. Let F' = F,(u,v) where u, v are independent variables and F), is the
field of p elements. Let 2P — u € F[z]. We claim that z? — u is irreducible in
F[x]. We have seen that if P — u is reducible then there exits 5 € F = F,(u,v)
such that 8P —u = 0. If 8 = h(u,v)/l(u,v), then hP(u,v) = ulP(u,v) which is a
contradiction by considering the power of u. Therefore, if 5 is a root of 2P — wu,
then [F(5) : F| = p. Now, consider zP — v as a polynomial in F(3)[z]. Again if
2P — v has a root v € F(f) then v = w(B,v)/z(8,v) and 4* = v implies that
wP(B,v) = vzP(B,v), a contradiction by considering the degree of v. Therefore,

[F(8,7) : Fl = [F(B)() : F(B)[F(B) : F] = p*.
Next, suppose v € F(8,7). Then

v=g(8,7)
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for some polynomial g(s,t) of two variables. This implies that
VP =g"(8,7) = 9(B”,7") = g(u,v) € F.

This implies that degree of ming(v) is at most p, or [F(v); F] < p. In other
words, F(8,7) # F(v) for all v € F(j3,~) and the field F(8,~) is not simple.



The Galois Group

Let L be a field. An automorphism of L is a field isomorphism o : L — L.

DEFINITION 7.1 Let L be a finite field extension of F. Then Gal(L|F) is the
set

{0 : L — L|o is an automorphism, o(a) = a for all a € F.}.

THEOREM 7.1 The set Gal(L|F) is a group under composition.

Proof
If o, 7 € Gal(L|F) then o7 € Gal(L|F). The identity map on L is the identity for

1

Gal(L|K). Sine o is an isomorphism, o~ ! exists and finally associativity follows

from composition of functions. O

LEMMA 7.2 Let L be a finite field extension. Fix o € Gal(L|F). Let
h(l’l,"' 71‘77,) € F['T’h'” 7:L'n] and ﬂh"' a/BTL e L. Then

a(h(B1,- -+, Bn)) = h(a(B1), -+ ,0(Bn))-
In particular, o(h(8)) = h(a(5)).

Proof
This follows from the observation that if h(81, - ,0,) is a finite sum in terms
of B1,- -, Bpn, namely, if

h(B1,-+ ,Bn) = Z aklv_“yknﬁfl oo Bln

1<k, ;kn <N

with ay, ... &, € F, then

(B2 B)) = Y ke k(B0 (B) " = (0 (Br), -+, (Bn))-

1<k, kn <N
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THEOREM 7.3 Let L be a finite field extension of L and o € Gal(L|F'). Then

(a) If h(z) € F[z] is a nonconstant polynomial with o € L as a root, then o(«)
is another root of h(z) lying in L.

(b) f L = F(ay, - ,a,), then o is uniquely determined by its values on
Ay, 5, Qp.
Proof

By Lemma 7.2, we find that

So if « is a root of h(x) then o(«) is also a root of h(z). This implies (a).
To prove (b), let 0,7 € Gal(L|F). Suppose o(«;) = 7(ay),i = 1,2,--- ,n. Then
for 6 € F(alf" 70511)3

/B — f(a17 >an)
g(ala ,O[n)
This implies that
olay), - ,0(an
P (CICO RN ()
g(a(al), o ,O'(Oén))
T(a1), -, 7(ay
g(r(on), -, 7(an))
Therefore, o is uniquely determined by its values on aq, - -, ay,.

DEFINITION 7.2 Let a be algebraic over a field F. Let L be the splitting fields
of ming (). The roots of ming(c) are called the conjugates of a.

THEOREM 7.4 If L is a finite extension of F', then Gal(L|F) is finite.

Proof
By Theorem 4.18, L is finite implies that L = F(au,- - , ), where each «; is
algebraic over F'.

Let S = {y € L}y is a conjugate of «; for some 1 < j < n}. Observe that S is
finite. Since ¢ is determined by its values on «; and since o(cy;) is a conjugate of
o and that S is a finite, we conclude that there are finitely many possible o’s.
Hence, Gal(L|F) is finite.

O
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THEOREM 7.5 Suppose L; and Lo are finite field extensions of F'. Let ¢ be an
isomorphism from L; to Lo that is identity on F. Then the map sending o to
o1 defines a group isomorphism from Gal(L;|F) to Gal(Lz|F).

Proof

We first show that if o € Gal(L;|F) then for B € L, pop=1(B8) € La. So

1

pop~t € Gal(Ly|F). To show that the map sending o to op~! is an isomor-

phism, we observe that the inverse map is ¢ =7 for 7 € Gal(Ly|F) and

po1020” " = oo™ ot
O

DEFINITION 7.3 Let f(x) € F[z]. The Galois group of f(x) over F is Gal(L|F')
where L is the splitting field of f(z) over F.

Remark 7.1 Suppose Ly ~ Lo are both splitting fields of f(x) over F. Then by
Theorem 7.5, Gal(L;|F) ~ Gal(Ly|F) and so the Galois group of f(z) over F is
well defined up to isomorphism of splitting fields of f(x).

Galois groups of splitting fields

In this section, we prove an important fact about the splitting field of a separable
polynomial.

THEOREM 7.6 Let L be the splitting field of a separable polynomial f(x) €
F[z]. Then

Gal(L|F)| = [L : F.

Proof

Let oy, -+ , oy, be roots of a separable polynomial f(x). Then «; are separable
over F since the minimal polynomial of «; divides f(z), which is separable. By
Theorem 6.4, L = F() where 8 € L is separable over F. Let h(z) = ming(8).
Note that

F(B) = F[] ~ Flx]/h(x) Flx].
Therefore [L : F] = m = deg(h(x)).
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To complete the proof of the theorem, we need to show that |Gal(L|F)| = m.
Now, 8 € L and L is the splitting field of f(z). By Theorem 5.6, we conclude that
L is a normal extension and all the roots of h(z) lie in L. Let $1, - , B, where
B1 = B, be roots of h(z) in L. Note that 0 € Gal(L|F') is uniquely determined
by o(B). There are m-choices for o since o(5) = ; for some j between 1 and
m. Therefore |Gal(L|F)| < m. Next, given 5 and (;, we can find an element
7 € Gal(L|F) such that 7(8) = ;. This show that |Gal(L|F)| > m. Therefore,
|Gal(L|F)| = m and this completes the proof of the theorem. O

Permutations of roots

In this section, we relate Galois Groups to permutations of roots of separable
polynomials. Let n = deg(f). Then in a splitting field of a separable polynomial
f(z) € Flz], we can write

f@)=clz—ay) - (x— an).

For each o € Gal(L|F'), o(c;) is a root of f(z). This implies that o(a;) = o)
for some 7 € S,. In this way, we can associate o € Gal(L|F') to an element
TES,.

THEOREM 7.7 Let L be the splitting field of a separable polynomial f(z) with
deg(f) = n. The map Gal(L|F) — S,, described above is a one to one group
homomorphism.

Proof

Write L = F(ay, -+ ,a,) where oy, -+, ay, are roots of f(z). Suppose 01,09 €
Gal(L|F) with (Ti(Oéj) = O‘n(j)vi = ]., 2. NOW, 0'10'2(Oéj) = 0'1(047.2(]')) = Q1 (12(5))"
Hence o105 corresponds to 7y 75. Therefore the map is a homomorphism. to show
that the map is one to one. Suppose 71 = 72. Then 01(;) = ar, ;) = ) =
o2(a;). This implies o1 = o9 since 0 € Gal(L|F) is determined by its values
1, Ol O

COROLLARY 7.8 If L is the splitting field of a separable polynomial f(z) €
F[z], then [L : F]|n! where n = deg(f).

Proof
The group Gal(L|F) is mapped into a subgroup of .S,, and this implies that

Gal(L|F)||n!.
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By Theorem 7.6, we conclude that

[L: F|n!.

Remark 7.2 Note that we have previously shown in Theorem 5.1 that if L is
a splitting field of a polynomial f(x) € Flz], then [L : F] < nl. We have shown
here that if f(z) is irreducible and separable then [L : F]|n!.

EXAMPLE 7.1 The subgroup {(1),(12)(34),(13)(24),(14)(23)} is transitive
while {(1),(12),(34),(12)(34)} is not transitive.

The main result in this section is the following theorem due to C. Jordan
discovered around 1870:

THEOREM 7.9 Let L be the splitting field of a separable polynomial f(z) € F|x]
of degree n. Then the subgroup of S,, corresponding to Gal(L|F) is transitive if
and only if f(z) is irreducible over F'.

Proof
Suppose f(z) is irreducible with roots a1, -+ ,a, € L. For a # o with f(a) =
f(a') = 0, we know that there exists o € Gal(L|F) such that o(a) = o/, by
Theorem 5.4. This shows that Gal(L|F') is transitive on the roots of f(z).
Conversely, suppose Gal(L|F') corresponds to a transitive subgroup of S,.
Let h(z) be an irreducible factor of f(x). Let ai,--- ,a, be roots of f(z) and
let h(e;) = 0 for some i. Let j € {1,2,---,n}. By transitivity of Gal(L|F),
there exists ¢ such that o(a;) = ;. Since h(cey;) = 0, h(o(a;)) = 0. Since j is
any integer between 1 and n, h(z) must have at least n roots and this implies
that deg(h(z)) > n and we deduce that f(z) = h(z) and f(z) is therefore
irreducible. O

EXAMPLE 7.2 Determine the structure of the group Gal(L|Q) if L is the split-
ting field of zP — 2.
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Solution
The splitting field of a? — 2 is L = Q({p, 21/P) where ¢ = *™/P. We have seen
that

[L:Q] <[Q(¢): QQERY?): q].

Next, p|[L : Q] and (p—1)|[L : Q]. Since (p,p—1) = 1, we conclude that p(p—1)
divides [L : Q] or [L : Q] > p(p — 1). Therefore, [L : Q] = p(p — 1). By Theorem
7.6,

Gal(LQ)[ = [L : Q] = p(p — 1).

We now determine the structure of Gal(L|Q). We know that any o € Gal(L|Q)
is determined by ¢(2'/?) and o((,). Define

o2V =¢g2VP o< j<p-1,
and
oin(Gp)=¢F1<k<p-1.

There are p(p — 1) choices of ¢;; and these are the elements in Gal(L|Q) since
|Gal(Z|Q)| = p(p — 1).
We now check that

ik 0 0ps(2HP) = 0 1(C121/P)
=Grg2
= C;’C-i-jgl/p7

and

04,k © UT,S(CIJ) = aj,k(czf) = ;k'

Dropping o in the above, we see that Gal(L|Q) is isomorphic to the group
(G,e)
where G = N x H with N = Z/pZ and H = (Z/pZ)* and
(4, k) e (r,s) = (j +rk, sk).

The group G has identity (0,1) and the inverse of (j, k) is (—jk’, k") where k' is
the inverse of k£ in H. This group is called the semi-direct product of N by H.

EXAMPLE 7.3 Determine the structure of Gal(F,»|F)).

Solution
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Note that L = F,n is a splitting field of 27" — 2 and therefore
|Gal(L|Fp)| = [L: F,] =n.

We now show that Gal(L|F,) is cyclic of order n by constructing a generator
for Gal(L|F)) explicitly. First, note that if L? = {8?|5 € L} then L” = L. Now,
since 8 € L,

n n—1
B=pr = ()P
which means that L C LP. Clearly, LP C L then LP = L. Let ¢ be the map
a(B) = p".

It is a bijection from L to L since it is a surjection. Note that
c(B+7) =B+ =" +1"=0(B)+0(7).
Also,
o(B7) = (B7)" = 89" = o(B)o(7).
So o € Gal(L|F,). Next, let a be a generator for (F,»)*. Then
o’ (a) = o’

and the smallest j such that 07(a) = a is j = n since the order of « in (Fpn)*
is p™ — 1. Therefore the order of ¢ in Gal(L|F,) is n and Gal(L|F,) is generated
by o. The map o is known as the Frobenius automorphism.



The Galois extension and Galois
Closure

We have now come to the main theorems of Galois theory.

DEFINITION 8.1 Suppose we have a finite extension L over F with Galois
group Gal(L|F). Given a subgroup H C Gal(L|F), we let

Ly ={a€ Llo(a) =« forall c € H.}.
We call Ly the fixed field of H.

THEOREM 8.1 Let F' C L be a finite field extension. The following are equiva-
lent:

(a) L is the splitting field of a separable polynomial in F[z].
(b) F is the fixed field of Gal(L|F') acting on L.
(¢) F C L is a normal separable extension.

Proof

We first show that (a) implies (b). Let L be the splitting field of a separable
polynomial in F[z]. Let K be a fixed field of Gal(L|F'). This means that if o« € K,
the o(a) = a for all & € Gal(L|F). By definition of Gal(L|F'), we know that F’
is fixed by Gal(L|F) and so

FCK. (8.1)

Since L is the splitting field of a separable polynomial f(z) € Flz], L is
the splitting field of f(z) viewed as a polynomial over K. By Theorem 7.6, we
conclude that

[L: K] =|Gal(L|K)| and [L: F] = |Gal(L|F)|. (8.2)
Now, F' C K C L implies that [L : K] < [L : F]. By (8.2), we deduce that
(Gal(LIK)| < |Gal(L|F)|.

Next, let ¢ € Gal(L|F). Then since K is the fixed field of Gal(L|F), o(a) = «
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and thus, o € Gal(L|K). This implies that
|Gal(L|F)| < |Gal(L|K)].

Therefore,
|Gal(L|K)| = |Gal(L|F)|

and by (8.2),
[L:F]=[L:K]. (8.3)

From (8.1), we know that F' C K. Together with (8.3), we deduce F = K. In
this proof, we have shown that if K = Lgai(z|F), then

Gal(L|K) = Gal(L|F). (8.4)
Note that we may rewrite (8.4) as
Gal(L|Lgai(zr)) = Gal(L|F).

We next show that (b) implies (¢). Suppose F is the fixed field of Gal(L|F).
We need to show that L is normal and separable over F'.

We first show that L is separable over F. Let « € L. Let o1 (), -+ ,0.-(a) be
the distinct images of o under Gal(L|F). Let

T

h(z) = [ (@ - oj(a)).
j=1
This is a polynomial in L[z].
Let 0 € Gal(L|F'). Then

o(oj(a)) €{oi(a),---,o(a)} = 5

since o(o;(a)) must be one of the distinct images of o under Gal(L|F'). Now, if
o(oj(a)) = o(ok(a)) then oj(a) = ok (). Hence, o permutes the elements in S.
This implies o fixes the coefficients of h(x). Since elements fixed by Gal(L|F')
lies in F', we conclude that h(z) € F|x]. By definition of h(x), we find that h(x)
is a separable polynomial in F[z] and « is a root of h(x). Hence « is separable
over F' and therefore, L is separable over F'.

Next, we show that L is a normal over F. Let 8 be a root of an irreducible
polynomial f(z) € F[z] and 8 € L. We need to show that f(z) splits completely
in L. By our construction in the previous paragraph, we can find a separable
polynomial g(z) of the form

o) = [T~ 75(0)),
j=1
where 7;(8),j = 1,2,--- ,s are distinct images of 5 under Gal(L|F). We have
seen that g(z) € F[z]. Next let t(z) = ming(5). Since t(8) = 0, we conclude
that (z — B)|t(z). Now ¢(8) = 0 implies that ¢(;(8)) = 0 for 7; € Gal(L|F).
Therefore (x — 7;(8))[t(x). This implies that g(x)|t(z). Since t(z) is irreducible,
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g(x) = t(x). Since 7;(8) € L, we conclude that all the roots of ¢(x), namely,
7;(8),j=1,2,--- s, are all in L. This implies that L is a normal extension over
F.

Finally, we show that (c) implies (a). Suppose L is a normal and separable
extension of F. Since L is finite, we may write L = F(ay,---,a,) where the
minimal polynomial of «; for each j is separable. By Theorem 6.4, we conclude
that there exists 8 € L separable over F such that L = F(8). Let b(x) =
ming(S). By normality of L, b(x) splits completely in L = F(3). If K is the
splitting field of b(x) then K must contain 8 and L C K. On the other hand, K
is the splitting field of b(x) and by definition of splitting field, it must be contained
in fields for which b(x) splits completely. Therefore K C L. This implies that
L = K is the splitting field of a separable polynomial b(x) (which in this case is
also irreducible).

[

DEFINITION 8.2 An extension L of F is called a Galois extension of F' if it
satisfies one of the three conditions of Theorem 8.1.

THEOREM 8.2 Suppose L is a Galois extension of F' and F' C K C L. Then L
is a Galois extension of K.

Proof

Note that L is the splitting field of a separable polynomial f(z) over F'is L is a
Galois extension of F. But f(z) is also a separable polynomial over K. Hence L
is a splitting field of the same separable polynomial f(x) over K and this implies
that L is a Galois extension of K. O

THEOREM 8.3 Let L be a finite extension of F'. Then

(a) |Gal(L|F)[[L : F],

(b) [Gal(L|F)| < [L : F],

(c) L is a Galois extension if and only if |Gal(L|F)| = [L : F].

Proof
We first prove (a). Let K be the fixed field of Gal(L|F). By (8.4),
Gal(L|K) = Gal(L|F).

Therefore, K being the fixed field of Gal(L|F') is the fixed field of Gal(L|K). By
Theorem 8.1, L is a splitting field of a separable polynomial over K and so, by
Theorem 7.6,

Gal(L|K) = [L : K.
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Now, since F C K, [L : K] divides [L : F]. Now, [L : K] = |Gal(L|K)| =
|Gal(L|F)| (by (8.4)), we conclude that |Gal(L|F')| divides [L : F).

Part (b) follows immediately from (a).

To prove (c), we observe that if L is Galois over F, then Gal(L|F) = [L : F)
since L is a splitting field of a separable polynomial over F'.

For the converse, let K be the fixed field of Gal(L|F'). We have seen that
[L: K] =|Gal(L|K)| = |Gal(L|F)|. Hence, if

|Gal(L|F)| = [L : F],
then
[L:K]|=[L:F)=[L:K][K:F]

implies that [K : F] =1, or K = F. Since L is Galois over K, L is Galois over
F. O

Remark 8.1 Part (c) of Theorem 8.3 is another equivalent condition for L being
Galois over F'.

Finite separable extensions

The primitive element theorem Theorem 6.4 states that if L is finite extension

of Fand L = F(ai1, - ,a,), where a;j,1 < j < n are separable, then there
exists 3 separable over F' such that L = F(3). But we have not shown that L is
separable if L = F'(a1,- -+ ,a,) where a;,1 < j < n are separable. We will now

show that this is indeed the case.

THEOREM 8.4 Let L be a finite extension of F'. Then L is separable over F if

and only if L = F(ai,--- ,ay), where each «; is separable over F.
Proof
One direction is immediate. If L is a finite separable extension of F', then L
is spanned by, say, a1, -+, ay, each of which is separable over F. Furthermore,
L="F(a1, o).
Conversely, suppose L = F(aq, - - , ap), where each o, 1 < j < n, is separable

over F'. Then by Theorem 6.4, there exists a separable element 3 such that
L = F(B). Let f(x) be the minimal polynomial of 8 over F' and let M be the
splitting field of f(x). Then M is Galois over F, hence separable over F. Now,
F(B) = F(a1, - ,a,) = L C M since M is the splitting field of f(x). Since M
is separable over F', this means that L is separable over F.

O
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Galois closure

The proof of Theorem 8.4 shows that if L is a finite extension of F' of the form
L = F(ai1, - ,a,) for which each «; is separable over F, then one can find
a field extension M of L which is Galois over F. This motivates the following
theorem.

THEOREM 8.5 Let L be a finite separable extension of F. Then there is an
extension M of L such that

(a) M is Galois over F'
(b) Given M’ Galois over F, there is a field homomorphism ¢ : M — M’ that
is identity on L. (This says that M is the smallest Galois extension over F'.)

Proof

By Theorem 6.4, we conclude that L = F(8) for some 8 € L. Let f(z) be the
minimal polynomial of 8 over F and M be the splitting field of f(z). Then M
is Galois over F'.

To prove (b). Let L € M’ where M’ is Galois over F. Then M’ is a normal
extension of F'. This means that if L = F(f) with minimal polynomial f(x) then
f(z) splits completely in M’. In other words, if 3;,1 < j < r, are the roots of
f(x) then By, -+, 8, € M'. Since the splitting field M = F(B1, -, ;) is the
smallest field that contains 31, - , 3, and F, we conclude that M C M’. O

The field constructed in Theorem 8.5 is called the Galois closure of L over F'.
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Conjugate fields

DEFINITION 9.1 Suppose F C K C L where [L : F] < co. For o € Gal(L|F),
we call o K = {o(a)|a € K} a conjugate field of K.

LEMMA 9.1 Let F C K C L and 0 € Gal(L|F). Then F C oL C L and
[K:F]=[cK:F].

Proof

Note that oF = F C oK. Since o is an automorphism of L, c K ~ K (can be
viewed as isomorphism of vector spaces over F). Therefore, [0K : F| = [K :
F] O

Galois subfields of a Galois extension

THEOREM 9.2 Suppose F' C K C L where L is Galois over F. The following
are equivalent:

(a) K = 0K for all o € Gal(L|F),
(b) K is a normal extension of F,
(¢) K is Galois over F.

Proof

We first prove (a) implies (b). Let § € K C L. In the proof of Theorem 8.1,
we have seen that if ¢;(8),1 < j < r, are the distinct images of § under the
elements in Gal(L|F'), then the polynomial

hiw) = [ [ (@ - 0;(8))

J=1
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is equal to ming(8). Since o; K = K, we conclude that all the roots of h(z) are
in K and this implies that K is a normal extension of F'.

To show (b) implies (c), we note that K is normal over F. Since L is Galois
over I, L is separable over F. Therefore K is separable over F. This means that
K is finite, normal and separable extension of F' and so, by Theorem 8.1, K is
Galois over F.

To show (c) implies (a), we note that K is Galois over F. Let 5 € K. Then
o(B), o € Gal(L|F), is a root of ming (). Since K is Galois over F', K is normal
and therefore o(8) € K. This implies that ¢(K) C K. Now by Lemma 9.1,
[K : F] = [0(K) : F]. Together with o(K) C K, we conclude that ¢(K) = K for
all 0 € Gal(L|F). O

We next given another equivalent statement for the statements given in The-
orem 9.2. We first state a lemma.

LEMMA 9.3 Suppose FF C K C L and [L : F| < oo. Then

(a) Gal(L|K) < Gal(L|F).
(b) If o € Gal(L|F) then Gal(L|ocK) = oGal(L|K)o~*.

Proof
To prove (a), let o € Gal(L|K). Since o fixes K, it fixes F'. Therefore, o €
Gal(L|F'). Since Gal(L|K) is a group, it is a subgroup of Gal(L|F).

To prove (b), let v € Gal(L|oK). Then v(o(k)) = o(k) for all k € K. This
implies that o~ 1yo(k) = k for all k € K and so, 0~ 'vo € Gal(L|K), or v €
oGal(L|K)o~! and

Gal(LloK) C oGal(L| K)o .

The inclusion in the other direction can be established in a similar way. O

THEOREM 9.4 Let L be a Galois extension of F'. Then the following are equiv-
alent:

(a) K =o(K) for all o € Gal(L|F),
(b) Gal(L|K) < Gal(L|F).

Proof

To prove (a) implies (b), we recall that given a subgroup H of a group G, we
say that H < G if gHg™! = H for all g € G. From Lemma 9.3, we find that if
o € Gal(L|F), then

o0Gal(L|K)o~ ! = Gal(L|o(K)) = Gal(L|K),
since o(K) = K. Therefore, Gal(L|K) < Gal(L|F).
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Next, suppose (b) holds, then for o € Gal(L|F),
0Gal(L|K)o™! = Gal(L|K).
This implies that
Gal(LloK) = Gal(L|K). (9.1)

But L is Galois over I’ implies that L is Galois over K and oK. This implies
that

oK = Lga(r|o(x)) = Laarx) = K,

where the second last equality follows from (9.1). This implies (a) is true. O

THEOREM 9.5 Suppose F' C K C L where L is Galois over F' and K is Galois
over F. Then Gal(L|K) < Gal(L|F') and

Gal(L|F)/Gal(L|K) ~ Gal(K|F).

Proof
If K is Galois over F, then by Theorem 9.2, Gal(L|K) < Gal(L|F).

It remains to establish the isomorphism. Let o € Gal(L|F). Note that a’ ) 18
a map from K to oK. But K is Galois over F' and therefore by Theorem 9.2,
oK = K. This implies that o[, € Gal(K|F).

Consider ¢ : Gal(L|F) — Gal(K|F) where p(o) = U’K. Note that ¢ is a
homomorphism since

(07)| (k) = o7(k) = 0| o (7] 1 (K)).

We suppose 0|K = 1k. Then o fixes K and thus, o € Gal(L|K). This implies
that the kernel of ¢ is Gal(L|K). By first isomorphism theorem for groups, we
deduce that

Gal(L|F)/Gal(L|K) =~ Im ¢.
But since L is Galois over F' and K,
[Im ¢| = |Gal(L|F)|/|Gal(L|K)| = [L: F]/[L: K] = [K : F] = |Gal(K|F)|.
Therefore Im ¢ = Gal(K|F).

Fundamental theorem of Galois Theory

Let H < Gal(L|F) where L is a finite extension of F. Define
Ly ={a€Llo(a) =« forallc € H}.
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THEOREM 9.6 Let L be a Galois extension of F.
(a) For an intermediate field K with FF C K C L,
Gal(L|K) C Gal(L|F)
has fixed field
Lea k) = K.
Furthermore,
Gal(L|K)| = [L : K] and [Gal(L|F) : Gal(L|K)] = [K : F].
(b) For H < Gal(L|F), its fixed field F C Ly C L has Galois group
Gal(L|Ly) = H.
Furthermore,

[L:Ly|=|H|and [Ly : F] = [Gal(L|F) : H].

Proof

We first establish (a). Since L is Galois over F, L is Galois over K. Therefore
K = Lgai(r|k) by Theorem 8.1. Since both L is Galois over K and F', we conclude
that

|Gal(L|K)| = [L: K] and Gal(L|F) = [L: F].
Therefore,
|Gal(L|F) : Gal(L|K)| = [L : F]/[L: K| =K : FJ.

To prove (b), let H be a subgroup of Gal(L|F). This gives F C Ly C L. For
any o € H, o’LH = 1z,,. Therefore H C Gal(L|Lg). To prove equality, we use
Theorem 6.4. Observe L is a finite separable extension of Ly since L is finite
separable over F. This implies by Theorem 6.4 that L = Ly («) for some a € L.
Let

h(z) = H (z — o(a)).
ocH
Note that h(z) is fixed by H and hence h(z) € Ly|z].

Let p(x) be the minimal polynomial of « in Lg[z]. Then p(x)|h(x). This implies

that
|H| = deg(h(z)) = deg(p(z)) = [Lula] : Lu] = [L: Lu].

But |H| < |Gal(L|Lg)| = [L : Ly, where the last equality follows from Theorem
7.6 since L is the splitting field of p(z) over L. Therefore, |H| = |Gal(L|Lg)
and we must have H = Gal(L|Ly). Now, [L : Ly] = |H|. Hence,

Gal(L|F)/Gal(L|Ly)| = [L : F)/IL: L) = [Ly : F).
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THEOREM 9.7 Let L be a Galois extension of F. Then the maps between
intermediate fields K where F' C K C L and subgroups H C Gal(L|F) given by
K — Gal(L|K) and H — Ly reverse inclusions and are inverse of each other.
Moreover, if a subfield K corresponds to a subgroup H under these maps then
K is Galois over F if and only if H < Gal(L|F). When this happens,

Gal(L|F)/H ~ Gal(K|F).

Proof
By Theorem 9.6 (a), the composition of the first map followed by the second
map yields

K — Lga(rx) = K.

Similarly, by Theorem 9.6 (b), the composition of the second map followed by
the first map yields

H — Gal(L|Ly) = H.

The map K — Gal(L|K) is inclusion reversing: If K71 C K, then an automor-
phism of L fixing K5 must fix K;. In other words, Gal(L|K2) C Gal(L|K}).

The map H — Ly is also inclusion reversing: If H; C Hs, then o € L which
is fixed by Ho is fixed by H;. This implies Ly, C Ly, .

Finally, let K = Ly. If K is Galois over F, then by Theorem 9.2, H =
Gal(L|Ly) < Gal(L|F). Conversely, if H = Gal(L|Ly) < Gal(L|F), then by
Theorem 9.2, we conclude that Ly = K is Galois over F.

O

THEOREM 9.8 If L is a finite separable extension of F', then there are finitely
many fields K with F' C K C L.

Proof
Let M be a field extension of L that is Galois over F. Subfields of M containing
F corresponds to subgroups of Gal(M|F') by Theorem 9.7. Since Gal(M|F) is a
finite group, it has finitely many subgroups. By the reverse map between subfields
of M and subgroups of Gal(M|F), we conclude that M contains finitely many
subfields. Therefore, L contains finitely many subfields.

O

We now give an examples to illustrate Theorem 9.7.
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EXAMPLE 9.1 Let L = Q(w,2'/3), where w = €2™/3. Let G = Gal(L|Q). Let
o,T € G be such that

o(21/3) = w23 o(w) = w, 7(2/3) = 213 and 7(w) = w?.

These two elements generate G and by verifying 7o77! = 071,72 = ¢ = 1g,
we deduce that G ~ S3. The subgroups of G are < 1g >, < 0 >, <7 >, < 0T >
and < 027 >. We now illustrate with an example on the determination of Ly
when H is a subgroup of G. Note that o fixes w and therefore L., contains
Q(w). But [Q(w) : Q] =2 = (G :< 0 >) = [L<y> : Q. Therefore Lo,~ = Q(w).
In a similar way, we can construct Ly for other subgroups H of G. But such

constructions are often tedious even for very small groups.

Compositum of fields

DEFINITION 9.2 Let L be a field extension of F. We say that K is an inter-
mediate field of L|F' if K is a field such that ' C K C L.

DEFINITION 9.3 Let L be a field extension of F'. Let F; and E5 be interme-
diate fields of L|F. The compositum of E; and Es, denoted by EyFEs, is the
intermediate field of L|K containing F; and Es.

We will also view E7 N Es as the largest field that is contained in E; and Fs.

DEFINITION 9.4 Let G be a group and let H and K be subgroups of G. We
define H V K as the smallest subgroup G containing H and K.

Remark 9.1 Tt is known that if HK = KH then HK is a group and HV K =
HK. Note also that HV K is not always H K if HK is not a group. For example,
HK is not a group when H =< (12) > and K =< (23) > while HV K = Ss.

We also view H N K as the largest group that is contained in H and K.
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THEOREM 9.9 (a) Let L be Galois over F' and FE4, Ey be intermediate fields
of L|F. Then

Gal(L|E1E2) >~ Gal(L|E1) n Gal(L|E2)
and
Gal(L|E1 M EQ) =) Gal(L|E1) \ Gal(L|E2)

(b) Let L be Galois over F and G = Gal(L|F). Let H and K be subgroups of
G. Then

Lyvk =Ly N Lk
and

Lynk = LuLk.

Proof
We will prove (a) and leave (b) as exercise. Now E} Es is the smallest field contain-
ing F4 and Es. By the Galois correspondence, F1 E corresponds to Gal(L|E; Es)
and is the largest group contained in Gal(L|E;) and Gal(L|Es), a consequence
of the order reversing property.

But the largest group contained in Gal(L|E;) and Gal(L|E2) is Gal(L|E1) N
Gal(L|E»).

Similarly, £1NFE5, which is the largest field contained in F; and Fy, must corre-
spond to a group that is the smallest group containing Gal(L|E;) and Gal(L|Es).
This implies that

THEOREM 9.10 Let f(z) € F[x] be a separable polynomial and let L be the
splitting field of f(x). Let f(x) = g(x)h(x) in F[z]. Let E; and E5 be intermedi-
ate fields of L|F which are splitting fields of g(x) and h(z) respectively. Suppose
ElﬂEg :F, then

Gal(L|F) ~ Gal(E1|F) x Gal(E,|F)

Proof
Recall that if H, K are normal subgroups of a group G, then G = H x K (a
direct product of H and K) if HNK = {1} and HV K =G.

Now E; and Es, being splitting fields of g(z) and h(x) respectively, are Ga-
lois over F. Hence, Gal(L|E;) and Gal(L|E3) are both normal subgroups of
Gal(L|F). Now E;FE5 is a field where f(x) splits and hence L C EyF5. On the
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other hand, F4 F> C L and hence L = E; E5. Now,
Gal(L|Ey) N Gal(L|Ey) = Gal(L|E1 E2) = Gal(L|L) = {1}
and
Gal(L|E1 N Ey) = Gal(L|F) = Gal(L|Ey) V Gal(L|E»)
= Gal(L|E1)Gal(L|Es) = Gal(L|Ey) x Gal(L|Es).

Finally,

Gal(L|E,) ~ Gal(L|F)/Gal(L|Ey) ~ Gal(Es|F)
and

Gal(L|Ey) ~ Gal(L|F)/Gal(L|Ey) ~ Gal(Ey|F)

and this completes the proof of the theorem. O

THEOREM 9.11 Let L be Galois over F' and E be a finite extension of F'. Then
LE is Galois over E and

Gal(EL|E) ~ Gal(L|L N E).

Proof
Since L is Galois over F', L is a splitting field of some separable polynomial
f(x) over F. Let L = F(ay,- -+ ,ay) where ay,--- ,ay are roots of f(x). Then

EL = E(ayq,- - ,ay) is the splitting field of f(z) viewed as a polynomial over
E[z]. Therefore EL is Galois over E.
Let M be a Galois closure of EL over F. Then
Gal(EL|E) ~ Gal(M|E)/Gal(M|EL)
~ Gal(M|E)/(Gal(M|E) N Gal(M|L))
~ Gal(M|L)Gal(M|E)/Gal(M|L)
~ Gal(M|LNE)/Gal(M|L) ~ Gal(L|L N E),
where the third last isomorphism is established using second isomorphism theo-

rem for groups. This completes the proof of the theorem.
O

Cyclotomic fields

DEFINITION 9.5 Let n > 3 be a positive integer and let ¢, = e2™*/™. The field
Q(¢n) is called the cyclotomic field of n-th root of unity.
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In this section, we will show that

[Q(¢n) : Q] = ¢(n), (9-2)

where (n) is the number of integers between 1 and n that are relatively prime
to n. The function p(n) is called the Euler ¢ function. We will prove (9.2) by
showing that the polynomial

n
H (r =)
=1
n,0)=1
is irreducible. If this is true, then

[Q(¢n) : Q] = deg(ming(¢n)) = ¢ (n).
We first observe that ®,(z) € Z[x]. Note that

x"—le H (ac—e%ij/"):HfI)d(m)
d|n

dln j=1
(gn)=n/d

We will show that ®,(z) € Z[z] by induction. Note that ®1(z) = z — 1 and
Oy(x) = 2+ 1 and so Pp(z) € Z[x] for k = 1 and 2. Suppose Py (z) € Z[x] for
k <n.Let ®,(z) =ag+a1x+ -+ + asz® and

[T ®a(x) = bo + brz + - by

d|n
d#n
Then
2" —1=(ap +arx+ -+ asx®)(by + bz + - + bat).
Note that agbg = —1. Now, for n > 1, ag = e2miN/n where
~ . np(n)
N = = .
(U, n):1

This implies that ag € Z. Hence by = +1. Considering the coefficient of x,
agbr + a1by € Z.

Since by = %1, we conclude that a; € Z. By comparing the coefficients of z*, for
0 < k <, we conclude that a; € Z,0 < j < s and therefore, ®,(z) € Z[z]. We
next show that @, (x) is irreducible over Q. We will follow the idea of Gauss.
The following lemma is the first step to the proof of the irreducibility of ®,,(x).

LEMMA 9.12 Let f(z) € Z[x] be monic polynomial of degree greater than 1.
Let p be a prime and f,(z) be a monic polynomial with the property that the
roots of f,(x) are the p-th power of the roots of f(z). Then
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Proof
If f(z) has roots y1,--- , v, 7 = deg(f(z)), then

r

fole) =[x =) =a" —opa (W, )" 4+ (1) o (- A0).

i=1
Note that the coefficients of f,(z) are symmetric in 74, --- ,7, and so, they can
be expressed in terms of o, (71, - - ,7,) with coefficients in Z. Since f(z) € Z[z],

this implies that f,(z) € Z[z]. This completes the proof of (a).
To prove (b), observe that in F),

0'7“7]'(7]137 e 77?) = UT"J(’YM te 7’77")p = 0'7“73'(717 e 777“) (mOd p)?

where the last congruence follows from Fermat’s little theorem. Hence, f,(z) =
f(z) in Fp,z]. O

We now prove the main result of this section.
THEOREM 9.13 For n > 3, ®,,(z) is irreducible over Q.

Proof

By Gauss Lemma, it suffices to prove that ®,,(z) is irreducible over Z. Suppose
that ®, () is reducible. We may express ®,,(z) as a product of monic irreducible
polynomials over Z. Let w be a root of ®,(x). Then there is an irreducible
polynomial f(z) over Z which divides ®,,(z) such that f(w) = 0. Next suppose
p1n. We claim that f(w?P) = 0.

Suppose not. Then f(w?) # 0. By definition of f,(z) in Lemma 9.12, we con-
clude that f,(w?) = 0 since its zeroes are the p-th power of the zero of f(x). Note
that f(x) and f,(z) has no root in common, for otherwise, (f(z), fp()) # 1 and
f(z) would divide f,(z) since f(z) is irreducible over Z. This would imply that
f(z) = fp(x) as the degrees of these two polynomials are the same. Therefore,
for some polynomial h(x), the factorization of ®,(z) in F,[z] is given by

O (2) = f(2) fp(2)h(z) = £2(2)h(z),

by Lemma 9.12 (b). But this is impossible since ®,(z), being a divisor of the
separable polynomial 2" — 1 over F,,, is separable. We must therefore conclude
that f(w?P) = 0.

Now, given (¢,n) = 1, write £ = q; - - - ¢s where g; are primes with (¢;,n) = 1.
Suppose g(z) = ming((,) and that it is a proper divisor of ®,,(z). Then by the
above, we observe that ¢(¢%*) = 0. Next, since ¢ {1 n, we may apply the result
we proved in the previous paragraph with w = (% to deduce that g(¢292) = 0.
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By repeating this argument s — 1 times, we conclude that g(¢?) = 0. Now, the
degree of g(x) must be at least p(n) and so, it cannot be a proper divisor of
®,,(x). Hence, ®,(z) = g(z) and is therefore irreducible in Z[z].

O

COROLLARY 9.14 The degree [Q((,) : Q] = p(n).

Moabius function and the number of irreducible polynomials
over I,

DEFINITION 9.6 The Mdbius function pu(n) defined by p(1) =1 and for n > 1
with

m
— (7
n=[]n"
k=1

(—1)™ ifa; =1,1<i<m
p(n) = . :
0 otherwise.

The Mobius function, like ¢(n), satisfies

p(mn) = p(m)u(n)

when (m,n) = 1. A function defined on positive integers which satisfies such
relation is called a multiplicative function.

DEFINITION 9.7 The function u(n) is defined by u(n) = 1 for all positive
integers n.

THEOREM 9.15 (The Mobius inversion formula) Let f and g be functions
defined on the set of positive integers with values in C. Then

Fo) =3 g(d),
d|n
if and only if

g(n) =Y u(n/d)f(d).

d|n

73
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For a proof of the above theorem, see “Introduction to Analytic Number The-
ory” by T.M. Apostol or “Analytic Number Theory for Undergraduates” by H.H.
Chan.

We observe that

2" —1= H@d(:c).

d|n
This implies that

In(2”™ — 1) = Zln Dy(x),
d|n

which by Theorem 9.15, leads to

In®,(z) = Zu(n/d) In(z? —1).
d|n

Therefore,

D, (x) = H (z® — 1)#(n/d) . (9.3)

d|n

From (9.3), we observe that since the left hand side is a polynomial in x, the
right hand side, which appears to be a rational function in x must also be a
polynomial. If we expand the right hand side in power series about the origin,
we know that the coefficients of the power series would have to be integers since

1
k-1

=—(1+a"+2%+...).

This implies that ®,,(z) € Z[z]. Alternatively, we may write the right hand side
as P(z)/Q(x) with P(z),Q(x) € Z[z] and deduce that

Observing that the coefficient of the constant term of Q(x) is 1, we may deduce
as in the previous section that the coefficients of 7, 0 < j < o(n), are all integers,
implying that ®,,(z) € Z[x].

EXAMPLE 9.2 When n = 6, we find that

2% — 1) (x —
q’ﬁ(x)zwzrf—m—kl.

There is another reason why we introduce p(n). We know that if p is a prime
then the number of irreducible polynomials of a given degree n over F,, is finite.
Theorem 9.15 allows us to give the number of irreducible polynomials of degree
n over F;, explicitly if we know the factorization of n into primes.
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We observe that if f(z) is an irreducible polynomial of degree n > 1 and ~ is
one of its roots, then

Fp (’y) ~ Fpn.
Since every element 3 in Fp» satisfies
B =8,

we conclude that f(x) must divide xP" — x. This property holds for every irre-
ducible polynomial of degree n over F,. We also observe that the roots of any
irreducible polynomial g(z) of degree d with d|n must also lie in a field isomorphic
to Fa. This implies that g(z) must also divide 27" — z. Therefore,

II ﬁ fio(x) divides 2P" —u,

dn ja=1

where f;,(x) is an irreducible polynomial of degree d. In other words, the roots
(which are distinct) of

H H fjd(x)
d|n ja=1

are the roots of 2?" — .
Next, if & € Fyn, then it is a root of some irreducible polynomial of degree
d > 1 over F,. This implies that all the roots of zP" — z are roots of

T 7.

d|n ja=1
Therefore,
mq mq
¥ —x= H H f]d(x) = H H fjd(x)‘
d|n ja=1 d|n ja=1

By Theorem 9.15, we conclude that for n > 2,

1
mnp = E Z ,u(n/d)pd
d|n

EXAMPLE 9.3 When n =4,p = 2, we find that
1

my = Z(_22 +24) =3.

75
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The polynomials of degree 4 which are irreducible over Fo are

*+r+1,2t+23+1, and 2*+ 22 +22+x+1.

Discriminant revisited

Let F be a field, with char F # 2. Let f(x) € F[z] be a separable polynomial
with deg f(x) > 2 and zeroes a1,--- ,ay,. L be a splitting field of f(x). Recall

that
VA(f) =]] (i —a;) € L.

i<j
We have seen that there exists a one to one homomorphism
¥ : Gal(L|F) — S,.

Let 7, denote the image of ¢ in .S,, under ¥. We have the following theorem:

THEOREM 9.16 Let F, f(x) and L be defined as in the above paragraph. Then
(a) o(v/A(f)) = sen(re)VA(),

(b) The image of Gal(L|F) under ¢ lies in A,,, the set of even permutations in
Sy, if and only if \/A(f) € F.

Proof
Recall that

VA =T](zi - =)

i<j
has the property that 7 - vA = sgn(7)V/A for all 7 € S,,. This yields
H(xf(i) — ;) = sgn(T) 1_[(35z —xj).
1<j 1<j
Applying the evaluation map, we deduce that
H(aT(i) — () = sgn(7) H(ai — ;).
1<j i<j
Let 7 = 75. Then o(a;) = a,, (;) and this implies that
[(er, @ = ar,m) = o (VA
i<j

This completes the proof of (a).
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For (b), let L be Galois over F'. Therefore, ' = Lga(z|r). Now,

A(f) € Lgar|r)

if and only if

for 0 € Gal(L|F). This is equivalent to

sgn(7,) (VA(f)) = VA(S).
The last identity is equivalent to 7, € A,,.

THEOREM 9.17 Let f(z) € F[z] e a monic irreducible separable cubic polyno-
mial where char F' # 2. If L is the splitting field of f(z) over F, then

Z/3Z if A(f) is a square in F,

S3 otherwise.

Gal(L|F) = {

Proof

The group G = Gal(L|F) acts transitively on roots of f(z). This implies that
3||Gal(L|F)|. The group G is isomorphic to a subgroup of S3 and there are two
subgroups in S3 with order divisible by 3. They are S and A3 ~ Z/3Z. We have
seen that Gal(L|F) is isomorphic to a subgroup of Az if and only if A(f) is a
square. This completes the proof of the theorem. O

The return of irreducible quartic polynomials

We have seen that if L is the splitting field of an irreducible cubic polynomial,
then

Gal(L|Q) ~ S5

if and only if A(f(x)) is not a square in Q. The analogue of this result for the
irreducible quartic polynomials over Q is more complicated.
We first recall that if

fx) =2+ qz® +ro+s
is irreducible with roots «a;,j = 1,2, 3,4, then

u= (o1 + az)(az + aq)
v= (a1 + asz)(ag + ay)

w= (a1 + ay)(az + az)
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satisfies a cubic polynomial equation of the form
g(x) = 23 — 2q2® + (¢* — 4s)x + 1% = 0.
The polynomial g(x) is called the resolvent cubic of f(z).

THEOREM 9.18 Let f(z) = 2* + q2? + rz + s be irreducible over Q and L be
the splitting field of f(z) over Q and G = Gal(L|Q). Let M = Q(u,v,w) be the
splitting field of g(z) = 2 — 2¢2? + (¢*> — 4s)x + 72 over Q and m = |Gal(M|Q)|.

(i) If m = 6, then G ~ S,.
(if) If m = 3, then G ~ Ay.
(iii) If m =1, then G ~ V, where
v = {(12)(34), (13)(24), (14)23), () B) (D)}

(iv) If m = 2, then G ~ Dg or Z/4Z.

Proof
If o € GNV then u,v,w is fixed by o. Conversely, checking the 24 elements of
S, we find that o € Sy fixes (o; + o) (ax + ay) if and only if

o e VU{(ij), (k0),(ikjl),(iljk)}.
This implies that if 0 € G fixes u,v,w then ¢ € GNV since
{(12),(34),(1324),(1423)} N {(13),(24),(1234),(1423)} = ¢.

Therefore, o fixes u,v,w if and only if o € V' N G. Hence, Gal(L|Q(u,v,w)) =
G N V. This implies that Gal(M|Q) ~ G/(G NV). Since Gal(M|Q) C Ss3, we
conclude that m = |G|/|GN V| = |Gal(M|Q)| must divide 6.

Next G is transitive on the roots of f(z) and so it is divisible by 4. Hence
|G| = 4,8,12,24. If m = 6, then |G| = 6|G N V| = 12 or 24. If |G| = 12 then
G ~ A4 but this means that |GNV| = 4 and |G| = 6|GNV| = 24, a contradiction.
Therefore, G ~ S4.

If m = 3, then |G| = 3|GNV| = 12,24. If |G| = 24, then |G N V| = 8 which is
impossible since |V| = 4. Hence, G ~ Ay.

If m =1, then |G| = |GN V| = 4. But |V| = 4 implies that G ~ V.

Finally, if m = 2, then |G| = 2|GN V]| < 8 since |V| = 4. This implies that
|G| =4 or 8. If |G| = 8, then |GNV| =4 and G ~ Dg, the Sylow 2-subgroup of
54.

If |G| = 4, then G is a Klein 4 group or cyclic of order 4. But if G is a Klein 4
group, it cannot be V since this would imply that G NV =V and violates the
equation |G| = 2|G N V|. Therefore G has to be cyclic of order 4.

O
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Solvable groups and simple groups

Solvable groups

DEFINITION 10.1 A finite group G is solvable if there are subgroups
{e}ZGnCGn_1C"'CG1CG0:G
such that for ¢ = 1,2,--- ,n, we have

(a) G, <G4
(b) [Gi—1 : G4] is a prime number.

Note that (b) can be replaced by G;_1/G; is a cyclic group with prime order.
THEOREM 10.1 Every subgroup of a solvable group is solvable.

Proof
Let G be a solvable group and let H be a subgroup of G. Let

Hisz,ﬁH,i:L--- , .

Consider 7 : Hi—l — Gi—l/Gi that sends h € Hi—l to th € Gz—l/G1
Observe that h € H; is in the kernel of 7 if and only if A € G;_1. This implies
that ker(m) = H,;_1. Therefore, H;_1/H; is isomorphic to a subgroup of G;_1/G;.
Since G;—1/G; is cyclic of prime order p, we conclude that H; = H;_; or H;_1/H;
is cyclic of prime order p. Discarding the duplicates,, we obtain a chain

{e}=H, CHn-1C---CH CHy=H,
where [H;_; : H;| is prime. This implies that H is a solvable. O

We now discuss the main tool for dealing with solvable groups.

THEOREM 10.2 Let G be a finite group and H be a normal subgroup of G.
Then G is solvable if and only if G/H and H are solvable.
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Proof

The previous theorem shows that if G is solvable then H is solvable. We now
show that G/H is solvable. Suppose G; are subgroups of G with G; < G;_1 and
[Gi—1 : G;] is prime. Next, since G; <G;_1, we conclude that HG; << HG;_; since
for hg € HG;_1,

Furthermore,

HGi_l/HGi ~ HGiGi_l/HGi ~ Gi—l/(Gi—l N HGl)
~ (Gi-1/Gi)/((Gi-1 N HG;)/G;).

But G;_1/G; is cyclic of prime order and so, HG;_1/HG,; is either trivial or
cyclic of prime order. If it is trivial, we discard HG;. In this way, we ob-
tain ji € {1,---,n} such that HG;,/H < HG;,_1/H with the property that
(HG;,/H)/(HGj,-1/H) is a group of prime order. This implies that G/H is
solvable.

Conversely, if H is solvable and G/H is solvable, then the fact that G is
solvable follows from the observation that the groups A;/H <1 A;_1/H, where
the A;’s contain H, give rise to A; < A;j_1 with [A;_; : A;] = p for some prime
p. This yields a collection of subgroups satisfying

H=A,<A,_1<---<1G.
The solvability of H implies that there are groups such that
By={lg}<By1<---<By=H,

with each B;_1/B; cyclic of prime order, we conclude, together with the chain
of groups from H to G that G is solvable. O

COROLLARY 10.3 Every finite abelian group is solvable.

Proof

We use induction on |G| = m. If |G| =1 or 2, G is solvable. Suppose m > 2 and
any abelian group of order less than n is solvable. Let G be a group of order n.
If n is prime, then we are done. Suppose n is composite. Let p be a prime that
divides n. By Cauchy’s theorem, there exists a subgroup H of order p. Now, H
is solvable and G/ H is solvable, by induction. This implies that G is solvable by
Theorem 10.2. O

THEOREM 10.4 Let G be a group of order p®, p prime. Then G is solvable.
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Proof
Let G acts on G via

g-x=grg .

Then O, = {gzg~'|lg € G}. Then |O,| divides |G|. Therefore, |0, = 1 or
divisible by p. If |O,| = 1, then gzg~! = z for all ¢ € G. This implies that
gx = xg and hence, x lies in Z(G), the center of G. From the identity
Gl= > 10:+ > 10,
z€Z(QG) 22 Z(QG)

we observe that |Z(G)| > 1.

We now prove by induction that every group of order p® is solvable. When
a = 1, G is cyclic and therefore solvable. Suppose the statement is true for
a < n—1. Let G be a group of order p™. Note that Z(G) < G. Furthermore,
Z(@G) is abelian and hence, solvable. Now, G/Z(G) has order less than p™ since
|Z(G)| > 1. Therefore, by induction hypothesis, G/Z(G) is solvable. By Theorem
10.2, we conclude that G is solvable. O

Simple groups

DEFINITION 10.2 A group G is simple if its only normal subgroups are {e}
and G.

All cyclic groups Z/pZ are simple. Here are more interesting simple groups.
THEOREM 10.5 The alternating group A,, is simple for n > 5

Proof

An /l-cycle lies in A, if and only if £ is odd. If n > 3, A,, is generated by 3-cycle.
Suppose H # {e}, H < A,,. We want to show that H = A,,. First, we will show
that H contains a 3-cycle. Let 0 € H. Let (j1 j2 j3) be a 3-cycle in A,, and o € H.
Since H <1 A,,, we conclude that

0~ (j142J3) " 0 (G1524s) € H
Suppose one of the cycles in o has length at least 4, i.e., 0 = (i1 igig64---) -

Then

o Migizig) To(inizis) = (i)(izigiy) € H.
Suppose o has a 3-cycle. If ¢ is a 3-cycle, then we are done. Otherwise, we
may assume that o = (i1 i243)(igi5 ---)--- . Now,

O'il(ig ig Z.5)710'(Z'2 i3 i5) = (il i4 iz i3 i5)



82 Solvable groups and simple groups

and so, H contains a 5-cycle and we apply our previous case to obtain a 3-cycle
in H.
Finally, suppose o is a product of 2-cycles. Let o = (i1 i2)(i344) - -+ Then

0 Migigia) tol(inizis) = (inis)(izi1) € H.
Let i5 be different from i1, 42,493 and i4. Now,
((413) (in4a)) " (i1 d345) " " (i1 d3) (G2 ia) (i1 i3 i5) = (i1 i5143) € H.
We next claim that H contains all 3-cycles. If ¢, 7, k, 7', j', k' are different, then
we observe that

(KEY @GR GR) (kK@) G E5) ™ = (K 5).
If 4, 4, k is to be mapped to i, 5, k', we use
(G EE) @G k)(RE)(G ) = (5K D).
Finally, if ¢, j, k is to be mapped to 4, 7, k', we use
(1)) (kE) (i k) (EE)(i]) = (ik'j).
Hence, H = A,,.

We have shown that A,, is simple for n > 5.

Remark 10.1 We will leave it as an exercise to show that if n > 5, then the
only normal subgroups of S,, are {1g,} and A4,,.
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Radical and Solvable extensions

DEFINITION 11.1 A field extension L of F' is radical if there are fields
F=FCcFC---CF,1CF,=1L
such that for ¢ = 1,2,---  n, there is a ; € G; such that
Fi=Fio1(v),

where ;" € F;_; for some positive integers m;.

Notice that if b; = ;™" € F;_1, then ; is a m;-th root of b;. We write
F,=F;_q( m(/bii)vbi € Fi_1.

Note that "/b; is used to denote the solution of ™ = b; that lies in Fj.

Remark 11.1 Note that although ~; is a root of 2™ —~"%, the degree [F;_1(7;) :
F;_1] may not be m,. For example, when F' = Q and v = e?™i/3 Q(e2™/3) is a
radical extension of Q with (e27%/2)3 = 1 but the degree of the extension is 2.

Remark 11.2 We can replace m; by primes in the chain of fields. For example
if p|m in the radical extension F' C F(v) with 4™ € F, we can refine the chain
as

F C F(y™/?) C F(y).

We may insert intermediate fields until we get a chain of radical extensions with
the property that F; = F;_1 () with gP¢ € F;_; where p; is a prime. Once again,
this does not mean that [F; : F;_1] = p;.

The following examples show the existence of extensions which are not radical.
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EXAMPLE 11.1 Let L be a splitting field of
flx) =234+ 2% — 22— 1 € Q[z].

The discriminant A,y = 7% > 0. One can show that the roots of f(x) are all
real and that

Gal(L|Q) ~ Z/3Z.

If Q C L were radical, then [L : Q] = 3 implies that L = Q(vy), with 7™ € Q,
for some positive integer m.

The minimal polynomial g(x) of v would divide 2™ — ™ and of degree 3. (In
other words m > 3.) Since L is Galois over Q, g(z) splits over Q(v), so that if
G = €2™/™ then three of v, {7y, - - - ,¢m=1y would be in L. This is impossible
since L C R. Hence L is not radical over Q.

DEFINITION 11.2 A field extension L of F' is solvable if there is a field extension
M of L such that M is radical over F.

The above example motivates the following definition:

DEFINITION 11.3 A field extension L of F is solvable if there is a field extension
M of L such that M is radical over F'.

Compositums and Galois closures

DEFINITION 11.4 Suppose K; and Ky are subfields of a field L. Then the
compositum of K; and Ky in L is the smallest subfield of L containing K; and
K5. We denote the compositum of K7 and Ky by K K.

We have seen in Section 8.2 that every finite separable extension L of F has a
Galois closure, which may be thought of as the smallest Galois extension of F'
containing L. The Galois closure of L can expressed in terms of compositums as
follow:

THEOREM 11.1 Suppose F' C L C M where M is Galois over F. Then the
compositum of all conjugate fields of L in M is the Galois closure of L over F.
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Proof

Theorem of primitive element implies that L = F(«) for some « € L. Since
M is Galois over F, the minimal polynomial h(x) of o over F' is separable and
splits in M. Let h(x) = (x — a1) -+ (x — @) where a; = «. It follows that
K = L(ay,- - ,a,) is a Galois extension of F' containing L. We claim that K is
the smallest Galois extension of F' containing L. Suppose K’ is Galois over F' and
contains L. Then K’ contains K. If 0 € Gal(M|F) then (L) = F(o(a)) € K.
Therefore, the compositum K* of o(L) for all o € Gal(M|F') is a Galois extension
contained in K. Since K* contains F' and «q,--- ,,, by minimality of K, we
conclude that K C K*. Therefore K is the compositum K* and every Galois
extension K’ contains K*. In other words, K* is the Galois closure of L. O

Properties of Radical and Solvable extension

LEMMA 11.2 Let F be a subfield of L.

(a) If L is radical over F' and M is radical over L, then M is radical over F'.

(b) If K7 and K are subfields of L and contain F' such that K; is radical over
F, then K; K> is radical over Ks.

(c) If K7 and K- are subfields of L and contain F' such that K; and K, are
radical over F', then K; K5 is radical over F.

Proof
To prove (a), we splice the two chains of extensions arising from the assumptions
that M is radical over L and L is radical over F.

To prove (b), let

F=FCF---CF, 1CF,=Ky,

with F; = F;_1(y;) such that v, € F; and v, € F;_1,1 <i <n. Let Ey = K>
and E; = E;_1(y;),1 < j < n. Note that F; C E; since Fy C Ky. Hence,
FE,, is radical over K5. Now, K1 = F,, C E,, and Ky C E,,. This implies that
K1K; C E,. On the other hand, F,, C KyF, = K>K; as it can be shown by
induction that EJ C KQFJ ( EJ = EJ71(7]> C KZijl('Yj) = KQFJ)
For (c), we observe that by (b) that KK, is radical over Ks. Now Ky is
radical over F. Therefore, by (a), K1 K> is radical over F.
O

THEOREM 11.3 If L is separable and radical over F', then its Galois closure is
also radical.

Proof
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Let M be an extension of L such that M is Galois over F. Given o € Gal(M|F),
F C o(L) C M. Since L is radical over F, o(L) is radical over F. By Lemma
11.2, we conclude that Lo(L) is radical over F. This implies that the Galois
closure of L, which is the compositum of the conjugate fields of L, is radical over
F.

O

COROLLARY 11.4 Let F be a field of characteristic 0. If L is a finite solvable
extension of F', then the Galois closure of L over F' is also solvable.

Proof

Since L is solvable, there exist an extension M of L which is radical over F.
Since the characteristic of F' is 0, M is separable. The Galois closure N of M is
radical, by Theorem 11.3. Now, N contains L and Galois over F'. This implies
that N contains the Galois closure of L and hence, the Galois closure of L is
solvable. O
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All fields in this chapter will have characteristic 0.

12.1 Solvable extensions and solvable groups

LEMMA 12.1 Let L be a Galois extension of F'. Let ( be a primitive m-th root
of unity. Then L(¢) is Galois over F' and F(¢) and the following are equivalent:

(a) Gal(L|F) is solvable.
(b) Gal(L(¢)|F) is solvable.
(c) Gal(L(¢)|F(¢)) is solvable.

Proof
By Theorem 6.4, L = F(«) for some « € L. The field L(¢) is the splitting field
of the product of 2™ — 1 € F[z] and h(z) € F[z] where h(z) is the minimal
polynomial of «. This implies that L(¢) is Galois over F. Since L(() is Galois
over F, it is Galois over F(().

We now prove the equivalence of (a) and (b). The key is to show that Gal(L(¢)|L)
is abelian. Given any o € Gal(L(¢)|L), its image on L({) is determined by its
action on ¢. Now, if 0,7 € Gal(L(¢)|L) and o(¢) = ¢¥ and 7(¢) = ¢#, then

o7(¢) = o(¢") = ¢ = " =70 (Q).

Therefore, o € Gal(L({)|L) is abelian and hence solvable.

Now Gal(L|F) is solvable and Gal(L(()|L) is solvable. This implies that Gal(L(¢)|F)
is solvable. The converse follows from the fact that if G is solvable and H is a
normal subgroup, then H and G/H are solvable.

Suppose Gal(L(¢)|F) is solvable. Then since Gal(L(¢)|F(¢)) is a subgroup of
Gal(L(¢)|F), it is solvable. Conversely, suppose Gal(L({)|F(¢)) is solvable. To-
gether with the fact that Gal(F({)|F) is solvable, we conclude that Gal(L(¢)|F)
is solvable.

O

The next lemma is crucial.
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LEMMA 12.2 Suppose M is Galois over K with Gal(M |K) cyclic of prime order
p. If K contains a primitive p-th root of unity (, then there is a € M such that
M = K(a) with o € K.

Proof
We let o be the generator of the cyclic group G = Gal(M|K). Let § € M with
8¢ K. Let

p—1

o = Z ¢l (B).

=0
Then

p—1
o(ai) = ¢ (B)
j=0

=D A (B) = (i

=1
This implies that
ola;) = Clay. (12.1)
When ¢ = 0, then o(ag) = ap implies that
a€K,

since o generates G which implies that «q is fixed by all the elements in G.
Suppose there exists an 4 with 1 <47 < p—1 and «; # 0, then «; ¢ K since o
does not fix «;. This implies that M = K(«;) since [K(«;) : K] =p=[M : K].
Furthermore, from (12.1), we conclude that o(a?) = of and thus, of € K. In
other words, we may choose a = a; and the proof of our lemma is complete.

To complete the proof, we show that there is indeed an ¢ with 1 <i <p—1
such that «; # 0. Suppose the contrary and that a; =0 for 1 <i < p—1. Then
adding up «;, including the case i = 0, we conclude that

p—1 p—1lp—1 A p—1 ‘ p—1 -
ap =Y a;=» 3 (UB)=) ' (B)Y (Y =pB. (12.2)
i=0 i=0 =0 j=0 i=0

Observe that since

p—1
ap = Z O-](B)a
7=0

p—1
(o) =Y o™ (B) = a,
j=0

and this implies that ay € K. The identity (12.2), namely, p8 = «p, together
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with ag € K, implies that 5 € K. This contradicts our assumption that 5 ¢ K
and we conclude that there exists an ¢ with 1 <4 < p — 1 such that «; # 0.
O

Galois’ Theorem for solvable extension

THEOREM 12.3 Let L be a Galois extension of F'. The following are equivalent:

(a) L is a solvable extension of F'.
(b) Gal(L|F) is a solvable group.

Proof

We will show that (a) implies (b). We first reduce to the radical case. Since L is
solvable, there exists an M containing L which is radical over F. Let N be the
Galois closure of M over F. By Theorem 11.3, we deduce that N is radical over
F.

It suffices to show that Gal(N|F') is solvable. This is because Gal(L|F) ~
Gal(N|F)/Gal(N|L) and Gal(L|F) is solvable since it is a quotient group of a
solvable group, by Theorem 10.2.

Since N is radical over F', there exists Fy = F, Fy,--- , F; = N such that

FoCF C---CkFy

such that F; = F;_1(~;) with ’y?j € F;_1. Let ¢ be a primitive ¢1¢s - - - g¢-th root
of unity. Consider the chain of fields

Fy CFfcC---CFy,

where F; = Fj((). It could happen that F} = F;_1((,v;) (for example, when
'y;-“ = 1) and in this case we discard F;. We then obtain a chain of fields

Fy CF;, C--- CFj, = N(Q),

with ’y;b € FY_, and v;, ¢ F} _;. Note that by Theorem 4.10, we conclude
that x%s — W;ZJ is irreducible over F _; and therefore

[ijk L F 1]:qjs'

s Js—

By applying the Galois correspondence, we obtain the series of groups
Gal(N(Q)IN(¢)) C -+ € Gal(N(Q)|F},) € Gal(N(¢)|F(C)),

with Gal(N(¢)|F},-1)/Gal(N(¢)|F;,) isomorphic to a cyclic group of order g
and this implies that Gal(N(¢)|F(¢)) is solvable. By Theorem 12.1, we conclude
that Gal(N|F) is solvable and this, as mentioned earlier, implies that Gal(L|F)
is solvable.

We now show that (b) implies (a). Let L be Galois over F' with solvable Galois
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group. Let m = |Gal(L|F)| and suppose ( is a primitive m-th root of unity. By
Theorem 12.1, we conclude that Gal(L(¢)|F(¢)) is solvable since Gal(L|F) is
solvable. We claim that

Gal(L(Q)F(Q))|||Gal(L|F)]. (12.3)
To see this, we define the homomorphism

¢ Gal(L(¢)|F'(¢)) = Gal(L(Q)[F)/Gal(L(¢)|L),
by
p(o) = oGal(L()|L).

Note that the kernel of ¢ is the 1gai(r(¢)|7(¢)) and this implies that Gal(L(¢)|F(¢))
is isomorphic to a subgroup of Gal(L(¢)|F)/Gal(L(¢)|L) ~ Gal(L|F). This
proves (12.3). Since Gal(L(¢)|F(¢)) is solvable, there exists a chain of groups

Gn - anl c---C Gl C GO = Gal(L(<)|F(C))7

such that G;_,/G; is cyclic of prime order ¢;. Note that ¢; divides m. By the
Galois correspondence, we obtain a chain of fields

F()cLg C---Clg,, ClLg,.

Note that [Lg; : Lg,_,] = g; and these fields contain the primitive g;-th root
of unity since it contains ¢ which is a primitive m-th root of unity. By Lemma
12.2, we deduce that Lg, = Lg,_, (a;) with o}’ € Lg,;_, and therefore, L(¢) is
radical over F'(¢). Clearly F'(¢) is radical over F'. Therefore by Theorem 11.2(a),
we conclude that L({) is radical over F'. Now L({) contains L and so this implies
that L is solvable over F' and the proof is complete. O

Solving polynomials by radicals

All fields in this section will be of characteristic 0.

DEFINITION 12.1 Let f(z) € F[z] be nonconstant with splitting field L.

(a) Aroot o € L of f(x) is expressible by radicals over I if « lies in some radical
extension of F'.
(b) The polynomial f(z) is solvable by radicals over F' if L is a solvable extension.

THEOREM 12.4 Let f(z) € F[z] be irreducible. Then f(x) is solvable by radi-
cals over F if and only if f(z) has a root expressible by radicals over F'.
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Proof
If f(z) is solvable by radicals over F' then the splitting field of f(z) is solvable.
This implies that L lies in a radical extension and all the roots of f(z) are
expressible by radicals over F. Conversely, suppose f(x) has a root a in some
radical extension of L. This means that F'(«) is solvable. By Corollary 11.4, we
know that if M is the Galois closure of F(a) over F, then M is solvable. Since
a Galois extension is normal and f(z) is irreducible over F' with a root in M,
we conclude that f(x) splits completely over M. Thus M contains the splitting
field L of f(x) over F. Hence, L is solvable and the proof is complete.

O

If f(x) € F[z] is irreducible and L is the splitting field of f(x), then the Galois
group of f(z) is Gal(L|F'). By Theorem 12.3, we conclude the following;:

THEOREM 12.5 A polynomial f(z) € F[z] is solvable by radicals over F if and
only if the Galois group of f(z) over F is solvable.

We can now apply the above theorem to polynomials of low degrees.

THEOREM 12.6 If f(z) € F[z] has degree n < 4, then f(z) is solvable by
radicals.

EXAMPLE 12.1 The polynomial f(z) = 2® — 6x + 3 is irreducible over Q
and has two complex roots since it has two turning points for which one is
above and the other is below the z-axis. The Galois group of the splitting field
of f(x) is transitive on the roots and its order is divisible by 5. By Cauchy’s
theorem, the group contains an element that corresponds to a 5-cycle in Ss.
Since the Galois group also contains a transposition corresponding to the complex
conjugation which switches the two complex roots, we deduce that the Galois
group is generated by a 5-cycle and a 2-cycle and must be isomorphic to Ss.
Since S5 is not solvable, we conclude that f(z) is not solvable by radicals.

Artin’s proof of the Fundamental Theorem of Algebra

THEOREM 12.7 Every nonconstant polynomial in C[z] splits completely over
C.
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Proof

It suffices to show that every nonconstant polynomial in R[z] splits completely
over C. Let f(z) € R[z] and L be its splitting field. Note that L is Galois over
R. Let G = Gal(L|R). Let H be defined as {e} if |G| is odd and H be a 2-Sylow
subgroup of G if |G| is even.

By the Galois correspondence, the fixed field Ly has degree [Ly : R] = [G :
H] = |G|/|H|.. This is odd by definition of H. This implies that Ly has odd
degree over R. Let Ly = R(a). Then the minimal polynomial h(z) of « has
odd degree. But this means that h(x) has a root in R and h(z) being irreducible
implies that the degree of h(x) is 1. This forces Ly = R and G = H. Therefore
|G| must be a power of 2. Let |G| = 2™. If n = 0, then G is trivial and this
implies that L = R and so f(z) splits completely over R. Suppose n > 1. Since
p-groups are solvable, we conclude that G is solvable. Let

{e}=G,CcGp1C---CGLCGy=G
be such that G; <« G;_1 of index 2 for 1 < i < n. This the chain of fields
LGO CLGl C - CLGn

such that [Lg, : Lg,_,] = 2 for 1 <4 < n. Suppose n > 1, then [Lg, : R] = 2.
The minimal polynomial of the primitive element of L¢, is quadratic with no
real roots and hence Lg, ~ C.

Suppose n > 2. Then Lg, is of degree 2 over C and we know that this is
impossible since every quadratic polynomial in C splits completely over C. Hence
we must have n = 1, which implies that L = Lg, ~ C. It follows that f(x) splits
completely over C.

O



13 Geometric constructions

13.1 Constructible numbers

Recall that a straightedge is an unmarked ruler. A compass is a device used to
draw circular arcs. Using a straightedge and compass, we can produce points on
a plane starting with two given points 0 and 1. We now carefully describe the
points, lines and circles which we can construct using straight edge and compass
starting from 0 and 1.

C1. From two points a and 3, we can draw a line ¢ that passes through a and g
as illustrated in the following diagram using a straightedge:

(C2. Given three points «, 5 and 7y, we can draw a circle C' with center v whose
radius is the distance between « and .
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P1. The point of intersection of distinct lines ¢; and /5.

Lo

P2. The points of intersection of a line £ and a circle.

P3. The points of intersection of two circles.

We identify the plane as the geometric representation of C. Constructing a
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point on the plane will mean constructing a complex number. As mentioned
earlier, we will start our construction from 0 and 1.

DEFINITION 13.1 A complex number « is constructible if there exists a finite
sequence of straightedge and compass constructions using C1, C2, P1, P2, and
P3 that begins with 0 and 1 and ends with «.

EXAMPLE 13.1 2 and ¢ are both constructible.

EXAMPLE 13.2 To construct a regular polygon with n sides with center 0, we
2mi/n in C. We will determine n for which a regular n-gon
can be constructed from 0 and 1.

need to construct e

The field of constructible numbers

THEOREM 13.1 The set
C := {a € C|a is constructible.}
is a subfield of C. Furthermore,

(a) a=a+1ibeC if and only if a,b € C,
(b) « € C implies that \/a € C.

Proof

We first show that C is a subgroup of C under addition. Let o« € C. We draw a
straightedge connecting « to 0 and beyond, followed by marking —« using the
compass.

Suppose a, § € C. If «, f and 0 are collinear, then we construct a+ S as follow:
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or

If a, 8, and 0 are not collinear, then we use the compass to create a + 3 as
follow:

a+f

This shows that (C,+) is a group.

Before showing (C—{0},-) is a group, we first show (a). If a,b € C, then certain
a+1b € C since i € C and (C,+) is a group.

Suppose a + ib € C with a,b € R. We may then obtain a and b as follow:

We next show that (C — {0},-) is a group. We will need to recall how we
construct a line parallel to a given line joining two given points. The construction
is similar to constructing a parallelogram. We construct two circles, one with
center v with radius |w — u| and the other circle with center w with radius
|u — v|. The following is the diagram for this construction:
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In the above diagram, if we choose u = i, w = ib, v = a, then p = ab. This
shows that ab is constructible if a,b € C. If we choose v = ia, v =1, w = 4, then
p = 1/a. This implies that if a € C then 1/a € C.

Finally, we show that if a nonzero a € C then \/a € C. We write a = re®®.
Given 0 which is constructible, we can always bisect #. We must now show that
given 7, we can construct /r. This is done by constructing the point p by using
the following diagram:

The length between o and 3 is /7.

Remark 13.1 The number e27%/5 is constructible since

pmiss _ LEVE i[5+ V6
4 2 2
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A characterization of C

THEOREM 13.2 The complex number a belongs to C if and only if there are
subfields

Q=hchc---CF,1CF,CC
such that o € F,, and [F; : Fj_1] =2for 1 <j <n.

Proof
Suppose

Q=FRCFKC---CF,CC,

where [F; : Fj_1] = 2. Then F; = F;_(,/a;) for some a; € F;. We now prove
by induction that F; C C. Note that Q = Fy C C. Suppose F;_; C C. Then «; is
constructible. This implies that ,/&; is constructible. Since C is a field, it must
contains Fj_;(,/a;) = F;. Therefore F; C C for 1 <i < n. Finally, since a € F,,
we deduce that a € C.

Conversely, given o € C. We will construct Fy, Fy, - -, Fy, with [F; : Fj_1] = 2,
which eventually contains «. We used induction on N, the number of times we
P1, P2 and P3 beginning with points on Q C C.

For N=0,ae€ QCC.

Next, we observe that if a,b are constructed in N — 1 times of Py, P, and Ps,
then there exists

QCF1C"'CFg

and
QCF/ Cc---CF,

with [F; : F;_1] = 2 and [F] : F!_;] = 2, with a € F; and b € F],. Hence, a,b is
contained in FyFj, with

QCF C---CF, CFF,C---CF[F,

Here
[FyF! : Fy) = [F! : F/ N Fy] =1or2.

This means that if a; are constructed in N — 1 steps with Py, P, or P3 starting
from points in Q, there are fields F; such that [F; : F;_1] = 2 with a5, € F,
where F,, is the last field in the inclusions.

Now, suppose « is constructed in N > 1 steps where the last step uses P1, the
intersection of distinct lines ¢; and ¢5. But ¢; was constructed from distinct oy
and 1 using C'1 and {5 was constructed from distinct cy and f3. By induction
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assumptions, there exist
FoCF1C"'CFnCC,

where [F; : F;_;] = 2 such that F, contains real and imaginary parts of
at, B1,as, B2. We aim to show that Fj, contains the real and imaginary parts
of a. Suppose ¢1 has equation a1z + b1y = ¢ and {5 has equation asx + by = co,
a1,by,c1,a2,b2,c0 € Fy,. If u and v are real and imaginary parts of «, then

(=) (@)

This implies that u,v € F,,, which implies that « € F), or F,,(i).
If the last step of a uses P2, it is the intersection of a line and a circle. This
means that the real and imaginary parts of «, say u and v, satisfy the equation

(u—w1)? + (v —w)? = (u1 —v1)* + (ug — v2)? (13.1)
and
aiu+ biv = cy.
If ai 75 O7
—bl’U — C1
= —\ 13.2
_ (132)

Substituting this into (13.1), we conclude that v € F,(¢) where &2 € F,,. Using
(13.2), we conclude that v € F,(£). Hence a € F,,(§) or F,,(£)(4). If by # 0 but
a; = 0, then we arrive at the same conclusion using similar argument.

If the last step of constructing o uses P3, then by writing the equations of
the two circles and removing the terms x2? 4+ y2, we obtain the equation of a line
passing through the two points of intersection of the circles. The line, together
with the circle, reduces our argument to the previous case.

O

COROLLARY 13.3 If o € C, then [Q(«) : Q] = 2™ for some positive integer m.

Proof
IfaeC,then Q=F C---CF,,I[Fj: Fj_1] =2 and a € F,. Therefore,
[F, : Q] = 2". Since Q(a) C F,, we find that [Q(«a) : Q] = 2™, m < n.

O

EXAMPLE 13.3 The angle /9 cannot be constructed because

[Q(cos(7/9)) : Q] = 3.
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Algebraic numbers and C

We have seen in Corollary 13.3 that if a € C then [Q(«) : Q] = 2. Can we say
that o € C if [Q(«) : Q] = 2™7? The answer is no. The following result indicates
when an algebraic number is constructible.

THEOREM 13.4 Let a € C be algebraic over Q. Let L be the splitting field of
ming(e). Then « € C if and only if [L : Q] is a power of 2.

Proof
Suppose [L : Q] = 2™. Since L is Galois over Q,
Gal(L|Q) = [L : Q].
Now |Gal(L|Q) is solvable and there exists G; such that
{e} =G, CGr_1 C--- C Gy CGy=Gal(L|Q),

G <Gy, [Gj,l : Gj] = 2. By Galois correspondence, we obtain a chain of field
extensions

Q=Lg,C---ClLg, =L,
with [Lg; : Lg;_,] = 2. Since a € L and [Lg; : Lg,;_,] =2 for 1 < j < m, we
conclude by Theorem 13.2 that a € C.

To prove the converse, we will show that C is a normal extension of Q. Let
f(z) be an irreducible polynomial with a root § € C. We need to prove that f(x)
splits completely over C. Let L be the splitting field of f(z) over Q. Let 3 be any
root of f(z). Then there exists o € Gal(L|Q) such that o(d) = 8 since Gal(L|Q)
is transitive on the roots of f(z). Now, since ¢ is constructible, we have

Q=FCFC---CF,CC,
where [F} : F;_1] =2 and 0 € F,,. Applying o to the chain of fields, we obtain
QCo(Fy)C---Co(F,) CC.
Note that F; = Fj_1(y/€) for some & € F;_;. and this implies that
o(Fy) = o(Fy1)(o(v/0)).

Now, o(/€)* = o(€) € o(Fj_1). Furthermore, o(\/€) & o(F;_1) for otherwise,
V€ € Fj_; which is not possible by our choice of . Hence,

[0(F)) : o(Fj—1)] = [F} : Fja] = 2.

Since § lies in o(F,,), by Theorem 13.2, we deduce that 8 € C and hence, C is
normal.

Next, let o € C and L be the splitting field of g(x) = ming(«). Then L = Q(v)
for some v € L. Now, L is the Galois closure of Q(«) and must therefore be
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contained in C, since L the smallest field which contains Q(«) and is Galois over
Q. This implies that v € C. By Theorem 13.2, [Q(7) : Q] = 2™. But Q(v) = L
and we conclude that [L : Q] = 2™.

O

EXAMPLE 13.4 Let a be a root of the irreducible polynomial z* — 422 + x + 1
and [Q(«) : Q] = 4. But [L : Q] = 24 and hence a ¢ C.



